ERT Documentation
Release 2.3

Joakim Hove

Nov 12, 2018

8

9

Introduction to ERT and Ensemble based methods
The data types available in ERT

Running simulations - the Forward Model
Workflows

Configuring observations for ERT

Eclipse - or not

The smoother update in ERT

Use the ERT API to create custom functionality

Keywords for the configuration file

10 Release notes for ERT

11 Indices and tables

CONTENTS:

17
19
21
29
31
33
35
67

75

CHAPTER
ONE

INTRODUCTION TO ERT AND ENSEMBLE BASED METHODS

The reservoir model for a green field is based on a range of subsurface input including seismic data, a geological
concept, well logs and fluid samples. All of this data is uncertain, and it is quite obvious that the resulting reservoir
model is quite uncertain. Although uncertain - reservoir models are still the only tool we have when we make reservoir
management decisions for the future.

Since reservoir models are very important for future predictions there is much focus on reducing the uncertainty in
the models. When the field has been in production for some time one can use true data assembled from the producing
field to update the model. This process is commonly called history matching in the petroleum industry, in this manual
we will use the term model updating. Before the model updating process can start you will need:

1. A reservoir model which has been parameterized with a parameter set {\}.
2. Observation data from the producing field d.
Then the the actual model updating goes like this:
1. Simulate the behaviour of the field and assemble simulated data s.
2. Compare the simulated simulated data s with the observed data d.
3. Based on the misfit between s and d updated parameters {\'} are calculated.

Model updating falls into the general category of inverse problems - i.e. we know the results and want to determine
the input parameters which reproduce these results. In statistical literature the the process is often called conditioning.

It is very important to remember that the sole reason for doing model updating is to be able to make better predictions
for the future, the history has happened already anyway!

1.1 Embrace the uncertainty

The main purpose of the model updating process is to reduce the uncertainty in the description of the reservoir, however
it is important to remember that the goal is not to get rid of all the uncertainty and find one true answer. There are two
reasons for this:

1. The data used when conditioning the model is also uncertain. E.g. measurements of e.g. water cut and GOR is
limited by the precision in the measurement apparatus and also the allocation procedures. For example for 4D
seismic the uncertainty is large.

2. The model updating process will take place in the abstract space spanned by the parameters {A} - unless you
are working on a synthetic example the real reservoir is certainly not in this space.

So the goal is to update the parameters { A} so that the simulations agree with the observations on average, with a
variability which is of the same order of magnitude as the uncertainty in the observations. The assumption is then that
if this model is used for predictions it will be unbiased and give a realistic estimate of the future uncertainty. This
illustrated in figure ensemble.

ERT Documentation, Release 2.3

Fig. 1: Ensemble plots before and after model updating, for one succesfull updating and one updating which has gone
wrong.

All the plots show simulations pressure in a cell as a function of time, with measurements. Plots (1) and (3) show
simulations before the model updating (i.e. the prior) and plots (2) and (4) show the plots after the update process (the
posterior). The dashed vertical line is meant to illustrate the change from history to prediction.

The left case with plots (1) and (2) is a succesfull history matching project. The simulations from the posterior
distribution are centered around the observed values and the spread - i.e. uncertainty - is of the same order of magnitude
as the observation uncertainty. From this case we can reasonably expect that predictions will be unbiased with an
reasonable estimate of the uncertainty.

For the right hand case shown in plots (3) and (4) the model updating has not been successfull and more work is
required. Looking at the posterior solution we see that the simulations are not centered around the observed values,
when the observed values from the historical period are not correctly reproduced there is no reason to assume that the
predictions will be correct either. Furthermore we see that the uncertainty in the posterior case (4) is much smaller
than the uncertainty in the observations - this does not make sense; although our goal is to reduce the uncertainty it
should not be reduced significantly beyond the uncertainty in the observations. The predictions from (4) will most
probably be biased and greatly underestimate the future uncertainty'.

1.2 Ensemble Kalman Filter - EnKF

The ERT application was originally devised created to do model updating of reservoir models with the EnKF algorithm.
The experience from real world models was that EnKF was not very suitable for reservoir applications, and ERT has
since changed to the Ensemble Smoother (ES) which can be said to be a simplified version of the EnKF. But the
characteristics of the EnKF algorithm still influence many of the design decisions in ERT, it therefor makes sense to
give a short introduction to the Kalman Filter and EnKF.

1. It should be emphasized that plots (3) and (4) show one simulated quantity from an assumed larger set of observations, in general there has
been a different set of observations which has induced these large and unwanted updates.

2 Chapter 1. Introduction to ERT and Ensemble based methods

ERT Documentation, Release 2.3

1.2.1 The Kalman Filter

The Kalman Fllter originates in electronics the 60’s. The Kalman filter is widely used, especially in applications where
positioning is the goal - e.g. the GPS system. The typical ingredients where the Kalman filter can be interesting to try
include:

1. We want to determine the final state of the system - this can typically the the position.

2. The starting position is uncertain.

3. There is an equation of motion - or forward model - which describes how the system evolves in time.
4. At fixed point in time we can observe the system, these observations are uncertain.

As a very simple application of the Kalman Filter, assume that we wish to estimate the position of a boat as z(t); we
know where the boat starts (initial condition), we have an equation for how the boat moves with time and at selected
points in time ¢ we get measurements of the position. The quantities of interest are:

x, The estimated position at time .
o The uncertainty in the position at time .

xy. The estimated/forecasted position at time ¢, - this is the position estimated from x,_1 and f(x,t), but before the
observed data d}, is taken into account.

dj, The observed values which are used in the updating process, the d;, values are measured with a process exter-
nal to the model updating.

o4 The uncertainty in the measurement d;, - a reliable estimate of this uncertainty is essential for the algorithm to
place “correct” weight on the measured values.

flz,1)
The equation of motion - forward model - which propagates x;_; — x}

The purpose of the Kalman Filter is to determine an updated x; from xy_1 and dj. The updated xy, is the value which
minimizes the variance o. The equations for updated position and uncertainty are:

2 0.2
* d k
T = + x4
G AT
2%
2 _ i Tk
d k

Looking at the equation for the position update we see that the analyzed position zy, is a weighted sum over the fore-
casted positon z; and measured position d, - where the weighting depends on the relative weight of the uncertainties
oy, and o4. For the updated uncertainty the key take away message is that the updated uncertainty will always be
smaller than the forecasted uncertainty: o < o7j,.

1.2.2 Using an ensemble to estimate the uncertainty: EnKF

1.3 Ensemble Smoother - ES

1.3. Ensemble Smoother - ES 3

ERT Documentation, Release 2.3

4 Chapter 1. Introduction to ERT and Ensemble based methods

CHAPTER
TWO

THE DATA TYPES AVAILABLE IN ERT

Very briefly described the purpose of ERT is to pass uncertain paramater values to a simulator!, in a form which works
as suitable input to the simulator and then subsequently load the results from the simulator. This means that data must
be formatted in a form which the simulator can load, and also that ERT must be able to read files generated by the
simulator.

The data managed by ERT are organized in different data types described in this chapter. Configuring the data used in
the conditioning project is a very important part of setting up a ERT configuration file - in practical terms this is how
you configure which uncertainty parameters should be studied. The data types in ert can be categorized in two ways:

1. How the data type behaves dynamically: is it a static parameter like porosity or permeability - i.e. does it serve as
input to the simulator, or is it a quantity which is generated as a result from the simulation. When understanding
the model updating algorithm and process it is important to understand this difference properly.

2. How the data type is implemented, what type of files does it read and write, how is it configured and so on.

NB: All datatypes have a common namespace; i.e. a globally unique keyword.

2.1 Parameters

The parameter datatypes will serve as input to the simulator. For a pure uncertainty study they will pass right through,
model updating update parameters. Sample internally or load externally.

2.1.1 Scalar parameters with a template: GEN_KW

The GEN_KW datatype is used in situations where you have a handful of related” parameters. The intention behind
the GEN_KW implementation is that ERT will sample parameters randomly according to a distribution specified by
the user, then ERT will use the sampled values and a template file provided by the user to generate a file which can be
used by the simulator.

In the main config file a GEN_KW instance is defined as follows:

GEN_KW ID templates/template.txt include.txt priors.txt

Here ID is an (arbitrary) unique string, templates/template. txt is the name of a template file, include.txt
is the name of the file which is made for each realization based on the template file templates/template.txt
and the prior distribution priors.txt is a file containing a list of parametrized keywords and a prior distribution for
each. Note that you must manually edit the input files of the simulator to ensure that the generated file include.txt
is included.

! Simulator should in this context be understood as the complete forward model, including various pre and post processing steps in addition to
the actual reservoir simulation.
2 ERT itself can not impose correlations among the parameters, if you need that you must implement it yourself in the forward model.

ERT Documentation, Release 2.3

Example: configuring GEN_KW to estimate MULTPV values

Let us consider an example where the GEN_KW parameter type is used to estimate pore volume multipliers in an
Eclipse model. We could then declare a GEN_KW instance in the main enkf configuration file:

GEN_KW PAR_MULTPV multpv_template.txt multpv.txt multpv_priors.txt

In the GRID or EDIT section of the ECLIPSE data file, we would insert the ollowing include statement:

INCLUDE
'multpv.txt' /

The template file multpv_template.txt would contain some parametrized ECLIPSE statements:

BOX
110 1 30 13 13 /

MULTPV
300%<MULTPV_BOX1> /

ENDBOX
BOX

1 10 1 30 14 14 /
MULTPV

300%<MULTPV_BOX2> /
ENDBOX

Here, <MULTPV_BOX1> and <MULTPV_BOX2> will act as magic strings. Note that the ‘<’ >’ must be present
around the magic strings. In this case, the parameter configuration file multpv_priors.txt could look like this:

MULTPV_BOX2 UNIFORM 0.98 1.03
MULTPV_BOX1 UNIFORM 0.85 1.00

In general, the first keyword on each line in the parameter configuration file defines a key, which when found in the
template file enclosed in ‘<’ and ‘>’, is replaced with a value. The rest of the line defines a prior distribution for the
key. See Prior distributions available in enkf for a list of available prior distributions. The various prior distributions
available for the GEN_KW keyword are here prior distributions available in ERT

The prior - it is really a transformation

The Ensemble Smoother method, which ERT uses for updating of parameters, works with normally distributed vari-
ables. So internally in ERT the interplay between GEN_KW variables and updates is as follows:

1. ERT samples a random variable x ~ N (0, 1) - before outputing to the forward model this is transformed to
y ~ F (Y) where the the distribution F (Y) is the correct prior distribution.

2. When the prior simulations are complete ERT calculates misfits between simulated and observed values and
updates the parameters; hence the variables x now represent samples from a posterior distribution which is
Normal with mean and standard deviation different from (0,1).

The transformation prescribed by F (y) still “works” - but it no longer maps to a distribution in the same family as
initially specified by the prior. A consequence of this is that the update process can not give you a posterior with
updated parameters in the same distribution family as the Prior.

6 Chapter 2. The data types available in ERT

ERT Documentation, Release 2.3

NORMAL

To set a normal (Gaussian) prior, use the keyword NORMAL. It takes two arguments, a mean value and a standard
deviation. Thus, the following example will assign a normal prior with mean 0 and standard deviation 1 to the variable
VARI:

VAR1 NORMAL 0 1

LOGNORMAL

A stochastic variable is log normally distributed if the logarithm of the variable is normally distributed. In other words,
if X is normally distributed, then Y = exp(X) is log normally distributed.

A log normal prior is suited to model positive quanties with a heavy tail (tendency to take large values). To set a
log normal prior, use the keyword LOGNORMAL. It takes two arguments, the mean and standard deviation of the
logarithm of the variable:

VAR2 LOGNORMAL O 1

TRUNCATED_NORMAL

This TRUNCATED_NORMAL distribution works as follows:
1. Draw random variable X ~ N (u, o)
2. Clamp X to the interval [min, max]

This is not a proper truncated normal distribution; hence the clamping to ‘‘[min,max]‘ should be an exceptional event.
To configure this distribution for a situation with mean 1, standard deviation 0.25 and hard limits O and 10:

VAR3 TRUNCATED_NORMAL 1 0.25 0 10

UNIFORM

A stochastic variable is uniformly distributed if has a constant probability density on a closed interval. Thus, the uni-
form distribution is completely characterized by it’s minimum and maximum value. To assign a uniform distribution
to a variable, use the keyword UNIFORM, which takes a minimum and a maximum value for a the variable. Here is
an example, which assigns a uniform distribution between 0 and 1 to a variable VAR4:

VAR4 UNIFORM O 1

It can be shown that among all distributions bounded below by a and above by b, the uniform distribution with
parameters a and b has the maximal entropy (contains the least information). Thus, the uniform distribution should be
your preferred prior distribution for robust modeling of bounded variables.

LOGUNIF

A stochastic variable is log uniformly distributed if it’s logarithm is uniformly distributed on the interval [a,b]. To
assign a log uniform distribution to a a variable, use the keyword LOGUNIF, which takes a minimum and a maximum
value for the output variable as arguments. The example

2.1. Parameters 7

ERT Documentation, Release 2.3

VAR5 LOGUNIF 0.00001 1

will give values in the range [0.00001,1] - with considerably more weight towards the lower limit. The log uniform
distribution is useful when modeling a bounded positive variable who has most of it’s probability weight towards one
of the bounds.

CONST

The keyword CONST is used to assign a Dirac distribution to a variable, i.e. set it to a constant value. Here is an
example of use:

VAR6 CONST 1.0

DUNIF

The keyword DUNIF is used to assign a discrete uniform distribution. It takes three arguments, the number bins, a
minimum and maximum value. Here is an example which creates a discrete uniform distribution on [0,1] with 25 bins:

VAR7 DUNIF 25 0 1

ERRF

The ERRF keyword is used to define a prior resulting from applying the error function to a normally distributed
variable with mean O and variance 1. The keyword takes four arguments:

VARS8 ERRF MIN MAX SKEWNESS WIDTH

The arguments MIN and MAX sets the minimum and maximum value of the transform. Zero SKEWNESS results
in a symmetric distribution, whereas negative SKEWNESS will shift the distribution towards the left and positive
SKEWNESS will shift it towards the right. Letting WIDTH be larger than one will cause the distribution to be
unimodal, whereas WIDTH less than one will create a bi-modal distribution.

DERRF

The keyword DERREF is similar to ERRF, but will create a discrete output. DERRF takes 5 arguments:

VAR9 DERRF NBINS MIN MAX SKEWNESS WIDTH

NBINS set the number of discrete values, and the other arguments have the same effect as in ERRF.

Loading GEN_KW values from an external file

The default use of the GEN_KW keyword is to let the ERT application sample random values for the elements in the
GEN_KW instance, but it is also possible to tell ERT to load a precreated set of data files, this can for instance be
used as a component in a experimental design based workflow. When using external files to initialize the GEN_KW
instances you supply an extra keyword INIT_FILE:/path/to/priors/files%d which tells where the prior
files are:

8 Chapter 2. The data types available in ERT

ERT Documentation, Release 2.3

GEN_KW MY-FAULTS MULTFLT.tmpl MULTFLT.INC MULTFLT.txt INIT_FILES:priors/
—multflt/faultssd
In the example above you must prepare files priors/multfit/faultsO, priors/multfit/faultsl, ... priors/multfit/faultsn

which ert will load when you initialize the case. The format of the GEN_KW input files can be of two varieties:

1. The files can be plain ASCII text files with a list of numbers:

1.25
2.67

The numbers will be assigned to parameters in the order found in the MULTFLT.txt file.

2. Alternatively values and keywords can be interleaved as in:

FAULT1 1.25
FAULT2 2.56

in this case the ordering can differ in the init files and the parameter file.

The heritage of the ERT program is based on the EnKF algorithm, and the EnKF algorithm evolves around Gaussian
variables - internally the GEN_KW variables are assumed to be samples from the N(0,1) distribution, and the distri-
butions specified in the parameters file are based on transformations starting with a N(0,1) distributed variable. The
slightly awkward consequence of this is that to let your sampled values pass through ERT unmodified you must con-
figure the distribution NORMAL 0 1 in the parameter file; alternatively if you do not intend to update the GEN_KW
variable you can use the distribution RAW.

2.1.2 3D field parameters: FIELD

The FIELD data type is used to parametrize quantities which have extent over the full grid; porosity and permeability
are the most typical examples of quantities which are estimated and modelled with the FIELD data type. In the
configuration file the FIELD keywords are configured like this:

FIELD PORO PARAMETER poro.grdecl

PORO is in principle an arbitrary string ID, but if the fields in question represent e.g. the porosity use of a matching
string of course makes sense. The string “PARAMETER” serves no purpose at the moment, but is legacy from the
time when ERT could do full EnKF and also needed to handle dynamic fields like pressure and saturations.

The “poro.grdecl” argument represents the name of the file which ert will prepare for the forward model, observe the
reservoir data file must have an INCLUDE statement corresponding to this file, i.e.

INCLUDE
'poro.grdecl' /

For the example above.

Field initialization

Observe that ERT can not sample field variables internally, they must be supplied through another application - typ-
ically geo modelling software like RMS; so to use the FIELD datatype you must have a workflow external to ERT
which can create/sample the fields. When you have established a workflow for generating these fields externally there
are two ways to load them into ERT: INIT_FILES to load pregenerated initial fields or FORWARD_INIT to load as
part of the forward model.

2.1. Parameters 9

ERT Documentation, Release 2.3

Initialization with INIT_FILES

In the situation where you do not have geo modelling as a part of the forward model you will typically use the geo
modelling software to create an ensemble of geological realisations up front. Assuming you intend to update the
porosity these realisations should typically be in the form of files /path/poro_0.grdecl, /path/poro_1.
grdecl, ... /path/poro_99.grdecl. The INIT_FILES: directive is used to configure ERT to load those
files when ERT is initializing the data. The number O, 1, 2, ... should be replaced with the integer format
specified $d - which ERT will replace with the realization number runtime, i.e.

FIELD ... INIT_FILES:/path/poro_%d.grdecl

in this case. The files can be in eclipse grdecl format or rms roff format; the type is determined from the extension so
you should use the common extensions grdecl or roff.

Initialization with FORWARD_INIT

When geomodelling is an integrated part of the forward model it is more attractive to let the forward model generate
the parameter fields. To enable this we must pass the FORWARD_INIT: True when configuring the field, and also
pass a name in the INIT_FILES:poro.grdecl for the file which should be generated by the forward model
component.

Observe that there are two important differences to the INIT_FILES: attribute when it used as the way to ini-
tialize fields, and when it is used in combination with FORWARD_INIT:True. When INIT_FILES: is used
alone the filename given should contain a $d which will be replaced with realization number, when used with
FORWARD_INIT:True that is not necessary. Furthermore in the FORWARD_INIT:True case the the path is
interpreted relative to the runpath folder, whereas in the other case the path is interpreted relative to the location of
the main ERT configuration file.

When using FORWARD_INIT: True together with an update algorithm in ERT the field generated by the geo mod-
elling software should only be used in the first iteration (prior), in the subsequent iterations the forward model should
use the field as it comes out from ERT. The typical way to achieve this is:

1. The forward model component outputs to a temporary file tmp_poro.grdecl.

2. In the first iteration ERT will not output a file poro.grdecl, but in the second and subsequent iterations a
poro.grdecl file will be created by ERT - this is at the core of the FORWARD_INIT: True functionality.

3. In the forward model there should be a job CAREFULL_COPY which will copy tmp_poro.grdecl only if
poro.grdecl does not already exist. The rest of the forward model components should use poro.grdecl.

Field transformations

For Assisted history matching, the variables in ERT should be normally distributed internally - the purpose
of the transformations is to enable working with normally distributed variables internally in ERT and expose
another distribution to the forward model through the use of transformations. Thus, the optional arguments
INIT_TRANSFORM:FUNC and OUTPUT_TRANSFORM:FUNC are used to transform the user input of parameter
distribution. INIT_TRANSFORM:FUNC is a function which will be applied when the field are loaded into ERT.
OUTPUT_TRANSFORM: FUNC is a function which will be applied to the field when it is exported from ERT, and
FUNC is the name of a transformation function to be applied. The avaialble functions are listed below:

POW10 This function will raise x to the power of 10: y = 10*.

TRUNC_POW10 This function will raise x to the power of 10 - and truncate lower values at 0.001.
LOG This function will take the NATURAL logarithm of x: y = In(z).

LN This function will take the NATURAL logarithm of x: y = In(x).

10 Chapter 2. The data types available in ERT

ERT Documentation, Release 2.3

LOG10 This function will take the log10 logarithm of x: y = log10(x).
EXP This function will calculate y = exp(z).

LNO This function will calculate y = In(x + 0.000001

EXPO This function will calculate y = exp(x) — 0.000001

The most common scenario is that a log-normal distributed permeability in the geo modelling software is transformed
to become normally distributted in ERT, to achieve this you do:

1. INIT_TRANSFORM:LOG To ensure that the variables which were initially log-normal distributed are trans-
formed to normal distribution when they are loaded into ert.

2. OUTPUT_TRANSFORM: EXP To ensure that the variables are reexponentiated to be log-normal distributed be-
fore going out to Eclipse.

2.1.3 2D Surface parameters: SURFACE

The SURFACE keyword can be used to work with surface from RMS in the irap format. The surface keyword is
configured like this:

SURFACE TOP OUTPUT_FILE:surf.irap INIT_FILES:Surfaces/surf%d.irap BASE__
—SURFACE:Surfaces/surf0.irap

The first argument, TOP in the example above, is the identifier you want to use for this surface in ert. The
OUTPUT_FILE key is the name of surface file which ERT will generate for you, INIT_FILES points to a list
of files which are used to initialize, and BASE_ SURFACE must point to one existing surface file. When loading the
surfaces ERT will check that all the headers are compatible. An example of a surface IRAP file is:

-996 511 50.000000 50.000000

444229.9688 457179.9688 6809537.0000 6835037.0000

260 -30.0000 444229.9688 6809537.0000

0 0 0 0 0 0 0

2735.7461 2734.8909 2736.9705 2737.4048 2736.2539 2737.0122
2740.2644 2738.4014 2735.3770 2735.7327 2733.4944 2731.6448
2731.5454 2731.4810 2730.4644 2730.5591 2729.8997 2726.2217
2721.0996 2716.5913 2711.4338 2707.7791 2705.4504 2701.9187

The surface data will typically be fed into other programs like Cohiba or RMS. The surface data can be updated using
the Smoother.

Initializing from the FORWARD MODEL

All the parameter types like FIELD,GEN_KW,GEN_PARAM and SURFACE can be initialized from the forward
model. To achieve this you just add the setting FORWARD_INIT:True to the configuration. When using forward init
the initialization will work like this:

1. The explicit initialization from the case menu, or when you start a simulation, will be ignored.

2. When the FORWARD_MODEL is complete ERT will try to initialize the node based on files created by the
forward model. If the init fails the job as a whole will fail.

3. If a node has been initialized, it will not be initialized again if you run again. [Should be possible to force this

.

When using FORWARD_INIT:True ERT will consider the INIT_FILES setting to find which file to initialize from.
If the INIT_FILES setting contains a relative filename, it will be interpreted relativt to the runpath directory. In the

2.1. Parameters 11

ERT Documentation, Release 2.3

example below we assume that RMS has created a file petro.grdecl which contains both the PERMX and the PORO
fields in grdecl format; we wish to initialize PERMX and PORO nodes from these files:

FIELD PORO PARAMETER poro.grdecl INIT_FILES:petro.grdecl FORWARD_INIT:True
FIELD PERMX PARAMETER permx.grdecl INIT_FILES:petro.grdecl FORWARD_INIT:True

Observe that forward model has created the file petro.grdecl and the nodes PORO and PERMX create the ECLIPSE
input files poro.grdecl and permx.grdecl, to ensure that ECLIPSE finds the input files poro.grdecl and permx.grdecl
the forward model should contain a job which will copy/convert petro.grdecl -> (poro.grdecl,permx.grdecl), this job
should not overwrite existing versions of permx.grdecl and poro.grdecl. This extra hoops is not strictly needed in
all cases, but strongly recommended to ensure that you have control over which data is used, and that everything is
consistent in the case where the forward model is run again.

2.1.4 General vector parameters: GEN_PARAM

The GEN_PARAM parameter type is used to estimate parameters which do not really fit into any of the other cate-
gories. As an example, consider the following situation:

Some external Software (e.g. Cohiba) makes a large vector of random numbers which will serve as input to the forward
model. (It is no requirement that the parameter set is large, but if it only consists of a few parameters the GEN_KW
type will be easier to use.) We want to update this parameter with enkf. In the main configuration file the input for a
GEN_PARAM instance is as follows:

GEN_PARAM ID ECLIPSE_FILE INPUT_FORMAT:xx OUTPUT_FORMAT :xx INIT_FILESZ/path/tO/
—init/files%d (TEMPLATE:/template_file KEY:magic_string)

here ID is the usual unique string identifying this instance and ECLIPSE_FILE is the name of the file which is written
into the run directories. The three arguments GEN_PARAM, ID and ECLIPSE_FILE must be the three first arguments.
In addition you must have three additional arguments, INPUT_FORMAT, OUTPUT_FORMAT and INIT_FILES.
INPUT_FORMAT is the format of the files enkf should load to initialize, and OUTPUT_FORMAT is the format of
the files enkf writes for the forward model. The valid values are:

ASCII - This is just text file with formatted numbers.

ASCII_TEMPLATE - An plain text file with formatted numbers, and an arbitrary header/footer.
* BINARY_FLOAT - A vector of binary float numbers.

* BINARY_DOUBLE - A vector of binary double numbers.

Regarding the different formats - observe the following:
1. Except the format ASCII_TEMPLATE the files contain no header information.
2. The format ASCII_TEMPLATE can only be used as output format.

3. If you use the output format ASCII_TEMPLATE you must also supply a TEMPLATE:X and KEY:Y option.
See documentation of this below.

4. For the binary formats files generated by Fortran can not be used - can easily be supported on request.
Regarding templates:

If you use OUTPUT_FORMAT:ASCII_TEMPLATE you must also supply the arguments TEMPLATE:/template/file
and KEY:MaGiCKEY. The template file is an arbitrary existing text file, and KEY is a magic string found in this file.
When enkf is running the magic string is replaced with parameter data when the ECLIPSE_FILE is written to the
directory where the simulation is run from. Consider for example the follwing configuration:

TEMPLATE: /some/file KEY:Magicl23

12 Chapter 2. The data types available in ERT

ERT Documentation, Release 2.3

The template file can look like this (only the Magic123 is special):

Header linel
Header line2

Footer linel
Footer line2

When ERT is running the string Magic123 is replaced with parameter values, and the resulting file will look like this:

Header linel
Header line2

Footer linel
Footer line2

2.2 Simulated data

The datatypes in the Simulated data chapter correspond to datatypes which are used to load results from a forward
model simulation and into ERT. In a model updating workflow instances of these datatypes are compared with observed
values and that is used as basis for the update process. Also post processing tasks like plotting and QC is typically
based on these data types.

2.2.1 Summary: SUMMARY

The SUMMARY keyword is used to configure which summary vectors you want to load from the (Eclipse) reservoir
simulation. In it’s simplest form the SUMMARY keyword just lists the vectors you wish to load, you can have multiple
SUMMARY keywords in your config file, and each keyword can mention multiple vectors:

SUMMARY WWCT:0P_1 WWCT:0P_2 WWCT:0P_3
SUMMARY FOPT FOPR FWPR
SUMAMRY GGPR:NORTH GOPR:SOUTH

If you in the observation use the SUMMARY_OBSERVATION or HISTORY_OBSERVATION keyword to compare
simulatons and observations for a particular summary vector that vector is automatically added to the ERT configura-
tion.

If you use the keyword REFCASE to configure an Eclipse reference case you can use wildcard notation to all summary
vectors matching a pattern, i.e. this:

REFCASE eclipse/refcase/CASE
SUMMARY WWCT:* WGOR: %
SUMMARY F*

SUMMARY G« :NORTH

will load the WWCT and WGOR vectors for all wells, all field related vectors and all group vectors from the NORTH
group.

2.2. Simulated data 13

ERT Documentation, Release 2.3

2.2.2 General data: GEN_DATA

The GEN_DATA keyword is used to to load arbitrary which has been generated by the forward model. ERT does
not have any awareness of the type of data encoded in a GEN_DATA keyword; it could be the result of gravimetric
calculation or the pressure difference across a barrier in the reeservoir. This means that the GEN_DATA keyword is
extremely flexible, but also slightly complicated to configure. Assume a GEN_DATA keyword is used to represent the
result of an estimated of the position of the oil water contact which should be compared with a oil water contact from
4D seismic; this could be achieved with the configuration:

GEN_DATA 4DWOC RESULT_FILE:SimulatedWOC_%d.txt INPUT_FORMAT:ASCII REPORT_STEPS: 0

The 4DWOC is an arbitrary unique key, RESULT_FILE:SimulatedWOC%d.txt means that ERT will look for
results in the file SimulatedWOC_0.txt. The INPUT_FORMAT:ASCII means that ERT will expect the re-
sult file to be formatted as an ASCII file, the other alternative formats are INPUT_FORMAT : BINARY_ FLOAT and
INPUT_FORMAT:BINARY_DOUBLE - in general only the ASCII alternative is used, and in the future that should at
least be the default.

The REPORT_STEPS: 0 is tightly bound to the $d integer format specifier in the result file - at load time the $d is
replaced with the integer values given in the REPORT__STEPS : option, for the example given above that means that $d
will be replaced with 0 and ERT will look for the file SimulatedWOC_0 . txt. In principle it is possible to configure
several report steps like: REPORT_STEPS:0, 10, 20 - then ERT will look for all three files SimulatedWOC_0.
txt, SimultedWOC_10.txt and SimulatedWOC_20.txt. Itis quite challenging to get this right, and the
recommendation is to just stick with one result file at report step 0°, in the future the possibility to load one keyword
GEN_DATA for multiple report steps will probably be removed, but for now the GEN_DATA configuration is quite
strict - it will fail if the RESULT_FILE attribute does not contain a %d.

Observe that since the actual result file should be generated by the forward model, it is not possible for ERT
to fully validate the GEN_DATA keyword at configure time. If for instance your forward model generates a file
SimulatedWOC_O0 (without the .txt extension you have configured), the configuration problem will not be de-
tected before ERT eventuallly fails to load the file SimulatedWOC_0.txt.

2.2.3 Keyword results: CUSTOM_KW

The CUSTOM_KW datatype is in a way the dynamic analogue to the GEN_KW datatype. It is intended to load a list of
key,value pairs from a file generated by the forward model. The CUSTOM_KW datatype is configured like this:

CUSTOM_KW KEYWORD RESULT_FILE:/name/of/file

Observe that even though it is a dynamic result type the CUSTOM_KW data type can not be used as the simulated value
when comparing with an observation. An example of CUSTOM_KW file generated by the forward model could look
like this:

KEY1 10
KEY2 246
KEY3 02

Le. interleaved string keys and corresponding numeric values.

3 The option is called report step - but the time aspect is not really important. You could just as well see it as an arbitrary label, the only important
thing is that if you have a corresponding GEN_OBS observation of this GEN_DATA vector you must match the report step used when configuring
the GEN_DATA and the GEN_OBS.

14 Chapter 2. The data types available in ERT

ERT Documentation, Release 2.3

2.3 EnKF heritage

With regards to the datatypes in ERT this is a part of the application where the EnKF heritage shows through quite
clearly, the datetypes offered by ERT would probably be different if ERT was made for Ensemble Smoother from the
outset. Pecularites of EnKF heritage include:

1. The FIELD implementation can behave both as a dynamic quantity, i.e. pressure and saturation, and static
property like porosity. In ERT it is currently only used as a parameter, but that this possible dual usage exists in
the code adds a significant complexity.

2. The parameter types have an internal pseudo time dependence corresponding to the “update time” induced by
the EnKF scheme. This pseudo time dependence is not directly exposed to the user, but it is still part of the
implementation and e.g. when writing plugins which work with parameter data managed by ERT you must
relate to it.

3. The time dependence of the GEN_DATA implementation. This is just too complex, there have been numerous
problems with people who configure the GEN_DATA keywords incorrectly.

2.3. EnKF heritage 15

ERT Documentation, Release 2.3

16 Chapter 2. The data types available in ERT

CHAPTER
THREE

RUNNING SIMULATIONS - THE FORWARD MODEL

A very important part of ERT functionality.

3.1 The forward model

3.2 The runpath directory

3.2.1 Default jobs
Reservoir simulation: eclipse
Reservoir modelling: RMS

File system utilities
3.2.2 Configuring your own jobs

3.2.3 The job_dispatch executable

3.3 Interfacing with the cluster

17

ERT Documentation, Release 2.3

18 Chapter 3. Running simulations - the Forward Model

CHAPTER
FOUR

WORKFLOWS

4.1 External workflows
4.2 Internal workflows

4.3 Plugins

19

ERT Documentation, Release 2.3

20

Chapter 4. Workflows

CHAPTER
FIVE

CONFIGURING OBSERVATIONS FOR ERT

5.1 General overview

When using ERT to condition on dynamic data, it is necessary to specify which data to condition on. In particular, for
a given piece of data to condition on, the ERT application needs to know:

* The actual measured value of the data.

* The uncertainty of the measured data.

* The time of measurement.

* How to simulate a response of the data given a parametrized ECLIPSE model.

To provide this observation to ERT, an observation file must be created. The observation file is a plain text file, and is
in essence built around for different classes of observations and has an associated keyword for each class:

* Well or group rates from an existing ECLIPSE reference case: The HISTORY_OBSERVATION keyword.
e Well logs, RFTS and PLTs: The BLOCK_OBSERVATION keyword.

 Separator tests, region pressures, etc.: The SUMMARY_OBSERVATION keyword.

 Exotic observations (e.g. data from 4D seismic): The GENERAL_OBSERVATION keyword.

Observe that observations and datatypes are quite tightly linked together. Before reading this you should have a firm
grasp of the dynamic data types.

5.2 The HISTORY_OBSERVATION keyword

The keyword HISTORY_OBSERVATION is used to condition on observations from the WCONHIST and WCON-
INJH keywords in schedule file provided to the enkf project (or alternatively an ECLIPSE summary file if you have
changed the HISTORY_SOURCE keyword in the enkf project). The keyword is typically used to condition on pro-
duction and injection rates for groups and wells, as well as bottom hole and tubing head pressures. An observation
entered with the HISTORY_OBSERVATION keyword will be active at all report steps where data for the observation
can be found.

In it’s simplest form, a history observation is created as follows:

HISTORY_OBSERVATION WOPR:P1;

This will condition on WOPR in well P1 using a default observation error. The default observation error is a relative
error of 10% to the measurement with a minimum error of 0.10. See below on how explicitly set the error.

In general, to condition on variable VAR in well or group WGNAME, one uses:

21

ERT Documentation, Release 2.3

HISTORY_OBSERVATION VAR:WGNAME;

Note that there must be a colon “:” between VAR and WGNAME and that the statement shall end with a semi-colon
“;”. Thus, to condition on WOPR, WWCT and WGOR in well C-17, and for the GOPR for the whole field, one would
add the following to the observation configuration:

HISTORY_OBSERVATION WOPR:C-17;
HISTORY_OBSERVATION WWCT:C-17;
HISTORY_OBSERVATION WGOR:C-17;

HISTORY_OBSERVATION GOPR:FIELD;

By default, the observation error is set to 10% of the observed value, with a minimum of 0.10. It can be changed as
follows:

HISTORY_OBSERVATION GOPR:FIELD
{
ERROR = 1000;
ERROR_MODE = ABS;
}i

This will set the observation error to 1000 for all observations of GOPR:FIELD. Note that both the items ERROR and
ERROR_MODE as well as the whole definition shall end with a semi-colon.

The item ERROR_MODE can take three different values: ABS, REL or RELMIN. If set to REL, all observation errors
will be set to the observed values multiplied by ERROR. Thus, the following will condition on water injection rate for
the whole field with 20% observation uncertainity:

HISTORY_OBSERVATION GWIR:FIELD
{
ERROR = 0.20;
ERROR_MODE = REL;
}i

If you do not want the observation error to drop below a given threshold, say 100, you can use RELMIN and the
keyword ERROR_MIN:

HISTORY_OBSERVATION GWIR:FIELD
{

ERROR = 0.20;
ERROR_MODE = RELMIN;
ERROR_MIN = 100;

}i

Note that the configuration parser does not threat carriage return different from space. Thus, the following statement
is equivalent to the previous:

HISTORY_OBSERVATION GWIR:FIELD { ERROR = 0.20; ERROR_MODE = RELMIN; ERROR_MIN = 100; }

s

Also note that the special keyword include can be used to read an external file. This can be very useful if you want to
change the standard configuration for a lot of observations in one go. For example, consider the following code:

HISTORY_OBSERVATION WOPR:P1 { include "hist_obs_wells.txt"; };
HISTORY_OBSERVATION WOPR:P2 { include "hist_obs_ wells.txt"; };
HISTORY_OBSERVATION WOPR:P3 { include "hist_obs_ wells.txt"; };

(continues on next page)

22 Chapter 5. Configuring observations for ERT

ERT Documentation, Release 2.3

(continued from previous page)

HISTORY_OBSERVATION WOPR:P4 { include "hist_obs_wells.txt"; };
HISTORY_OBSERVATION WOPR:P5 { include "hist_obs_wells.txt"; };

Where the contents of the file hist_obs_wells.txt may be something like:

ERROR_MODE = RELMIN;
ERROR = 0.25;
ERROR_MIN = 100;

In this case, changing the file hist_obs_wells.txt will affect all of the observations.

Note that the keyword include can be used anywhere in the configuration file. However, nested inclusion (use of
include in a file that has already been included with include) is not allowed.

By default, an observation entered with the HISTORY_OBSERVATION keyword will get the observed values, i.e. the
‘true’ values, from the WCONHIST and WCONINJH keywords in the schedule file provided to the ERT project. How-
ever it also possible to get the observed values from a reference case. In that case you must set set HISTORY_SOURCE
variable in the ERT configuration file, see Creating a configuration file for ERT.

To change the observation error for a HISTORY_OBSERVATION for one or more segments of the historic period,
you can use the SEGMENT keyword. For example:

HISTORY_OBSERVATION GWIR:FIELD
{

ERROR = 0.20;
ERROR_MODE = RELMIN;
ERROR_MIN = 100;

SEGMENT FIRST_YEAR
{
START = 0;
STOP = 10;
ERROR = 0.50;
ERROR_MODE = REL;
bi

SEGMENT SECOND_YEAR
{

START = 11;
STOP = 20;
ERRROR = 1000;

ERROR_MODE = ABS;
}i
bi

The items START and STOP sets the start and stop of the segment in terms of ECLIPSE restart steps. The keywords
ERROR, ERROR_MODE and ERROR_MIN behaves like before. If the segments overlap, they are computed in
alphabetical order. Error covariance for “merged” updates

When merging the historical observations from several report steps together in one update the different steps are
not independent, and it is beneficial to use a error covariance matrix, by using the keywords AUTO_CORRF and
AUTO_CORRF_PARAM ERT will automatically estimate a error-covariance matrix based on the auto correlation
function specified by the AUTO_CORREF keyword, with the parameter given by the AUTO_CORRF_PARAM param-
eter (i.e. the auto correlation length). The currently available auto correlation functions are:

EXP ~ exp(-x) GAUSS ~ exp(-x*x/2)

where the parameter x is given as:

5.2. The HISTORY_OBSERVATION keyword 23

ERT Documentation, Release 2.3

x = (t2 - t1) / AUTO_CORRF_PARAM

5.3 The SUMMARY_OBSERVATION keyword

The keyword SUMMARY_OBSERVATION can be used to condition on any observation whos simulated value is
written to the ECLIPSE summary file, e.g. well rates, region properties, group and field rates etc. A quite typical
usage of SUMMARY_OBSERVATION is to condition on the results of a separator test.

Note: Although it is possible to condition on well and group rates with SUMMARY_OBSERVATION, it is usually
easier to use HISTORY_OBSERVATION for this.

In order to create a summary observation, four pieces of information are needed: The observed value, the observation
error, the time of observation and a summary key. A typical summary observation is created as follows:

SUMMARY_OBSERVATION SEP_TEST_2005
{

VALUE = 100;
ERROR = 5;
DATE = 21/08/2005;
KEY = GOPR:BRENT;

}i

This will create an observation of group oil production for the brent group on 21th of august 2005. The observed value
was 100 with a standard deviation of 5. The name SEP_TEST 2005 will be used as a label for the observation within
the ERT and must be unique.

Similarly to the name of a HISTORY_OBSERVATION, the item KEY in a SUMMARY_OBSERVATION is used to
look up the simulated value from the summary file. And again, as when declaring a HISTORY_OBSERVATION, to
condition on VAR in well, group or region WGRNAME, one uses:

’KEY = VAR:WGRNAME;

For example, to condition on RPPW in region 8, one uses:

’KEY = RPPW:8;

It is also possible to give the observation time as a restart number using the RESTART item or as time in days from
simulation start using the DAYS item. Here are two examples:

—— Giving the observation time in terms of restart number.
SUMMARY_OBSERVATION SEP_TEST_2005
{

VALUE = 100;
ERROR = 5
RESTART = 42;
KEY = GOPR:BRENT;

}i

—— Giving the observation time in terms of days
—— from simulation start.

SUMMARY_OBSERVATION SEP_TEST_2008

{

VALUE = 213;
ERROR = 10;
DAYS = 911;

(continues on next page)

24 Chapter 5. Configuring observations for ERT

ERT Documentation, Release 2.3

(continued from previous page)

KEY = GOPR:NESS;
}i

5.4 The BLOCK_OBSERVATION keyword

This is observations of variables in grid blocks/cells. The observations can be of arbitrary ECLIPSE fields like PRES-
SURE (typically for an RFT), PORO or PERM. A block observation is entered with the BLOCK_OBSERVATION
keyword. Here is an example of a typical block observation:

BLOCK_OBSERVATION RFT_2006
{

FIELD
DATE

PRESSURE;
22/10/2006;

OBS Pl { I =1; J=1; K= 1; VALUE = 100; ERROR = 5; };
OBS P2 { I = 2; ;i K = 1; VALUE = 101; ERROR }i
OBS P3 { I 1; VALUE = 102; ERROR }i

[
NN
(S

[
w N
=

Il

[
[G2BNE)]
~ o~

}i

This will condition on observations of the pressure in grid blocks (1,1,1), (2,2,1) and (2,3,1) on the 22/10/2006.

By default the BLOCK_OBSERVATION requires that the specific field which has been observed (e.g. PRESSURE in
the example above) must have been specified in main ERT configuration file using the FIELD keyword, and ECLIPSE
must be configured to produce a restart file for this particular time. Alternatively it is possible to tell ERT to use the
summary vector as source of the data:

BLOCK_OBSERVATION RFT_2006
{
FIELD = PRESSURE;
DATE = 22/10/2006;
SOURCE = SUMMARY;

OBS P1 { I =1; J=1; K= 1; VALUE = 100; ERROR = 5; };
OBS P2 { I = 2; J =2; K= 1; VALUE = 101; ERROR = 5; 1};
OBS P3 { I =2; J=23; K=1; VALUE = 102; ERROR = };

|
Ul
~.

}i

In this case the data will be loaded from the BPR vectors in the summary file.

Note the use of the sub class OBS to specify the actUal observed values, the observation errors and their grid location.
Each OBS shall have a unique key within the BLOCK_OBSERVATION instance, and is required to have the items I,
J, K, VALUE and ERROR. These are the grid i,j and k indicies for the observation point, the observed value and it’s
standard deviation.

As with a SUMMARY_OBSERVATION, the observation time can be given as either a date, days since simulation
start or restart number. The respective keys for setting giving it as date, days or restart number are DATE, DAYS and
RESTART. Note that each BLOCK_OBSERVATION instance must have an unique global name (RFT_2006 in the
example above).

Block observations can often be quite long. Thus, it is often a good idea to use the special keyword include in order to
store the OBS structures in a different file. This is done as follows:

BLOCK_OBSERVATION RFT_2006
{

(continues on next page)

5.4. The BLOCK_OBSERVATION keyword 25

ERT Documentation, Release 2.3

(continued from previous page)

FIELD = PRESSURE;
RESTART 20;

include 'RFT_2006_OBS_DATA.txt';
}i

Where the file RFT_2006_0OBS_DATA .txt contains the OBS instances:

OBS Pl { I =1; J=1; K= 1; VALUE = 100; ERROR = 5; };
OBS P2 { I = 2; J = 2; K= 1; VALUE = 101; ERROR = 5; 1};
OBS P3 { I =2; J=23; K=1; VALUE = 112; ERROR = 5; };
OBS P4 { I =23; J=23; K=1; VALUE = 122; ERROR = 5; };
OBS P5 { I = 4; J = 3; K= 1; VALUE = 112; ERROR = 5; 1};
OBS P6 { I =5; J=23; K=1; VALUE = 122; ERROR = 5; };

5.5 The GENERAL_OBSERVATION keyword

The GENERAL_OBSERVATION keyword is used together with the GEN_DATA and GEN_PARAM type. This pair
of observation and data types are typically used when you want to update something special which does not fit into any
of the predefined enkf types. The ERT application just treats GENERAL_OBSERVATION (and also GEN_DATA) as
a range of number with no particular structure, this is very flexible, but of course also a bit more complex to use:

GENERAL_OBSERVATION GEN_OBS1 {
DATA = SOME_FIELD;
RESTART = 20;

OBS_FILE = some_file.txt;
bi

This example a minimum GENERAL_OBSERVATION. The keyword DATA points to the GEN_DATA instance this
observation is ‘observing’, RESTART gives the report step when this observation is active. OBS_FILE should be the
name of a file with observation values, and the corresponding uncertainties. The file with observations should just

be a plain text file with numbers in it, observations and corresponding uncertainties interleaved. An example of an
OBS_FILE:

1.46 0.26
25.0 5.0
5.00 1.00

This OBS_FILE has three observations: 1.46 +/- 0.26, 25.0 +/- 5.0 and 5.00 +/- 1.00. In the example above it is
assumed that the DATA instance we are observing (i.e. comparing with) has the same number of elements as the
observation, i.e. three in this case. By using the keywords INDEX_LIST or INDEX_FILE you can select the elements
of the GEN_DATA instance you are interested in. Consider for example:

GENERAL_OBSERVATION GEN_OBS1I {

DATA = SOME_FIELD;
INDEX_LIST = 0,3,9;
RESTART = 20;

OBS_FILE = some_file.txt;

}i

Here we use INDEX_LIST to indicate that we are interested in element 0,3 and 9 of the GEN_DATA instance:

26 Chapter 5. Configuring observations for ERT

ERT Documentation, Release 2.3

GEN_DATA GEN_OBS1

1.56 <—————————mmmmmm > 1.46 0.26
23.0 e > 25.0 5.00
56.0 \ /=== > 5.00 1.00

In addition to INDEX_LIST it is possible to use INDEX_FILE which should just point at an plain text file with indexes
(without any °, or anything). Finally, if your observation only has one value, you can embed it in the config object
with VALUE and ERROR.

5.5.1 Matching GEN_OBS and GEN_DATA

It is important to match up the GEN_OBS observations with the corresponding GEN_DATA simulation data correctly.
The GEN_DATA result files must have an embedded ‘%d’ to indicate the report step in them - in the case of smoother
based workflows the actual numerical value here is not important. To ensure that GEN_OBS and corresponding
GEN_DATA values match up correctly only the RESTART method is allowed for GEN_OBS when specifying the
time. So consider a setup like this:

—— Config file:

GEN_DATA RFT_BH67 INPUT_FORMAT:ASCII RESULT_FILE:rft_BH67_%d REPORT_STEPS:20
/1N /1N
. \ \
—— Observation file: | |
GENERAL_OBSERVATION GEN_OBSI1{ t—————————————— /
DATA = RFT_BH67; \
RESTART = 20; e /
OBS_FILE = some_file.txt;

}i

Here we see that the observation is active at report step 20, and we expect the forward model to create a file
rft_BH67_20 in each realization directory. Error covariance

The optional keyword ERROR_COVAR can be used to point to an existing file, containing an error covariance ma-
trix. The file should contain the elements of the matrix as formatted numbers; newline formatting is allowed but not
necessary. Since the matrix should by construction be symmetric there is no difference between column-major and
row-major order! The covariance matrix

[10.75-0.25]
C=[0.751.25-0.50] [-0.25-0.50 0.85]
Can be represented by the file:

1
0.75
-0.25
0.75
1.25

(continues on next page)

5.5. The GENERAL_OBSERVATION keyword 27

ERT Documentation, Release 2.3

(continued from previous page)

-0.50
-0.25
-0.50
0.85

without newlines, or alternatively:

1 0.75 -0.25
0.75 1.25 -0.50
-0.25 -0.50 0.85

with newlines.

28 Chapter 5. Configuring observations for ERT

CHAPTER
SIX

ECLIPSE - OR NOT

In the very first versions of ERT it was all about running Eclipse - there was no general forward model. The concept of
general forward model came quite quickly and since then the special treatment of Eclipse has gradually been reduced.
It is now possible to run a forward model without Eclipse at all, but ERT is still quite far from a situation where Eclipse
is just any other forward model. For good and for bad there is quite a lot of functionality in ERT which is specifically
targeted at Eclipse.

6.1 Eclipse keywords

DATA FILE This is the name of ECLIPSE data file used to control the simulations. The datafile used with this
keyword should be prepared for use with ERT, and will generally not be a 100% valid ECLIPSE data file:

—— Load the data file called ECLIPSE.DATA
DATA_FILE ECLIPSE.DATA

The preparations you should do to this file include:

1. You should insert INCLUDE statements to include the various uncertainty parameters in use at the right
place in the datafile.

2. You must make sure that the include files used in the datafiles can be correctly resolved from the runpath
location.

3. See the DATA_KW keyword which can be used to utilize more template functionality in the eclipse datafile.

When actually running the simulations the file given with the DATA_FILE keyword will be used as a template,
and a realization specific datafile will be written to the runpath folder, the name of this file is given by the
ECLBASE keyword.

ECLBASE This is the name of the eclipse simulations which will be generated by ERT, the ECLBASE argument
should typically contain a $d format specifier, which will be replaced with the realisation number when ERT
creates the runpath directories:

ECLBASE eclipse/CASE_%d

Observe that it is possible to add a leading directory part to the " ECLBASE "
setting as illustrated above; the directory "~ ‘eclipse/ " will be generated as
a subfolder in the runpath directories.

GRID This should be the name of an existing GRID/EGRID file. The main use of the grid is to map out active and
inactive cells when using FIELD data. If you do not use FIELD data you do not need the GRID keyword. The
grid argument will only be used by the main ERT application and not passed down to the forward model in any
way.

29

ERT Documentation, Release 2.3

SCHEDULE_FILE DEPRECATED!

6.2 Running with a different reservoir simulator

6.3 Running without a reservoir simulator

30 Chapter 6. Eclipse - or not

CHAPTER
SEVEN

THE SMOOTHER UPDATE IN ERT

7.1 Analysing the results
7.2 Local updates

7.3 Advanced: implementing your own update

31

ERT Documentation, Release 2.3

32

Chapter 7. The smoother update in ERT

CHAPTER
EIGHT

USE THE ERT API TO CREATE CUSTOM FUNCTIONALITY

33

ERT Documentation, Release 2.3

34

Chapter 8. Use the ERT API to create custom functionality

CHAPTER
NINE

KEYWORDS FOR THE CONFIGURATION FILE

Go to main ERT page

9.1 General overview

The enkf application is started with a single argument, which is the name of the configuration file to be used. The enkf
configuration file serves several purposes, which are:

* Defining which ECLIPSE model to use, i.e. giving a data, grid and schedule file.
* Defining which observation file to use.

¢ Defining how to run simulations.

* Defining where to store results.

* Creating a parametrization of the ECLIPSE model.

The configuration file is a plain text file, with one statement per line. The first word on each line is a keyword, which
then is followed by a set of arguments that are unique to the particular keyword. Except for the DEFINE keyword,
ordering of the keywords is not significant. Similarly to ECLIPSE data files, lines starting with “~” are treated as
comments.

The keywords in the enkf configuration file can roughly be divded into two groups:

* Basic required keywords not related to parametrization. I.e., keywords giving the data, grid, schedule and
observation file, defining how to run simulations and how to store results. These keywords are described in
Basic required keywords.

* Basic optional keywords not related to parametrization. These keywords are described in Basic optional key-
words.

* Keywords related to parametrization of the ECLIPSE model. These keywords are described in Parametrization
keywords.

* Advanced keywords not related to parametrization. These keywords are described in Advanced optional key-
words.

9.2 List of keywords

Keyword name Required by user? Default value

Purp

ADD_FIXED LENGTH_SCHEDULE KW | NO

Suppe

35

ERT Documentation, Release 2.3

Keyword name Required by user? Default value Purp
ANALYSIS_COPY NO Creat
ANALYSIS_LOAD NO Load
ANALYSIS_SET_VAR NO Set ar
ANALYSIS_SELECT NO STD_ENKF Selec
CASE_TABLE NO For rt
CONTAINER NO e
CUSTOM_KW NO Abilit
DATA_FILE YES Provi
DATA_ KW NO Repla
DBASE_TYPE NO BLOCK_FS Whicl
DEFINE NO Defin
DELETE_RUNPATH NO Expli
ECLBASE YES Defin
END_DATE NO You ¢
ENKF_ALPHA NO 1.50 Paran
ENKF_BOOTSTRAP NO FALSE Shoul
ENKF_CROSS_VALIDATION NO e

ENKF_CV_FOLDS NO 10 Numt
ENKF_KERNEL_PARAM NO 1

ENKF_LOCAL_CV NO FALSE Shoul
ENKF_MERGE_OBSERVATIONS NO FALSE Shoul
ENKF_MODE NO STANDARD Whic]
ENKF_PEN_PRESS NO FALSE Shoul
ENKF_RERUN NO FALSE Shoul
ENKF_SCALING NO TRUE Do w
ENKF_TRUNCATION NO 0.99 Cutof
ENSPATH NO storage Folde
FIELD NO Ads g
FORWARD_MODEL NO Add t
GEN_DATA NO Speci
GEN_KW NO Add ¢
GEN_KW_TAG_FORMAT NO <%s> Form:
GEN_KW_EXPORT_FILE NO parameter.txt Name
GEN_PARAM NO Add ¢
GRID NO Provic
HISTORY_SOURCE NO REFCASE_HISTORY Sourc
HOOK_WORKFLOW NO Instal
IGNORE_SCHEDULE NO

INSTALL_JOB NO Instal
ITER_CASE NO 1IES%d Case !
ITER_COUNT NO 4 Numt
ITER_RETRY_COUNT NO 4 Numt
JOBNAME NO Name
JOB_SCRIPT NO Pytho
LOAD_SEED NO Load
LOAD_WORKFLOW NO Load
LOAD_WORKFLOW_JOB NO Load
LICENSE_PATH NO A pat
LOCAL_CONFIG NO A file

36 Chapter 9. Keywords for the configuration file

ERT Documentation, Release 2.3

Keyword name Required by user? Default value Purp
LOG_FILE NO log Name
LOG_LEVEL NO 1 How 1
LSF_QUEUE NO normal Name
LSF_RESOURCES NO

LSF SERVER NO Set se
MAX_ITER_COUNT NO Maxir
MAX_RESAMPLE NO 1 How 1
MAX_RUNNING_RSH NO The n
MAX_RUNTIME NO 0 Set th
MAX_SUBMIT NO 2 How 1
MIN_REALIZATIONS NO 0 Set th
NUM_REALIZATIONS YES Set th
OBS_CONFIG NO File s
PLOT_SETTINGS NO Possil
PRE_CLEAR_RUNPATH NO FALSE Shoul
QUEUE_SYSTEM NO Syste:
REFCASE NO (see HISTORY_SOURCE and SUMMARY) Refer
REFCASE_LIST NO Full p
RERUN_PATH NO

RERUN_START NO 0 ...
RFT_CONFIG NO Confi,
RFTPATH NO rft Path t
RSH_COMMAND NO Comr
RSH HOST NO Remo
RUNPATH NO simulations/realization%d | Direc!
RUN_TEMPLATE NO Instal
STD_SCALE_CORRELATED_OBS NO FALSE Try tc
SCHEDULE_FILE NO Provic
SCHEDULE_PREDICTION_FILE NO Schec
SETENV NO You c
SINGLE_NODE_UPDATE NO FALSE ...
STOP_LONG_RUNNING NO FALSE Stop |
STORE_SEED NO File w
SUMMARY NO Add s
SURFACE NO Surfa
TORQUE_QUEUE NO ...
TIME_MAP NO Abilit
UMASK NO Contr
UPDATE LOG_PATH NO update_log Sumn
UPDATE_PATH NO Modif
UPDATE_SETTINGS NO Possil
WORKFLOW_JOB_DIRECTORY NO Direc

ref: <>

9.3 Basic required keywords

These keywords must be set to make the enkf function properly.

9.3. Basic required keywords

37

ERT Documentation, Release 2.3

DATA_FILE

This is the name of ECLIPSE data file used to control the simulations. The

data file should be prepared according to the guidelines given in Preparing an ECLIPSE reservoir model for use
with enkf.

Example:

—— Load the data file called ECLIPSE.DATA
DATA_FILE ECLIPSE.DATA

ECLBASE

The ECLBASE keyword sets the basename used for the ECLIPSE simulations. It

can (and should, for your convenience) contain a %d specifier, which will be replaced with the realization numbers
when running ECLIPSE. Note that due to limitations in ECLIPSE, the ECLBASE string must be in strictly upper
or lower case.

Example:

—— Use MY_VERY_OWN_OIL_FIELD-0 etc. as basename.
—— When ECLIPSE is running, the %d will be,
—— replaced with realization number, giving:

—— MY_VERY OWN_OIL_FIELD-0
—— MY_VERY_OWN_OIL_FIELD-1
—— MY_VERY_OWN_OIL_FIELD-2

—-— and so on.
ECLBASE MY_VERY_OWN_OIL_FIELD-%d

JOBNAME

As an alternative to the ECLBASE keyword you can use the JOBNAME keyword; in particular in cases where your
forward model does not include ECLIPSE at all that makes more sense. If JOBANME is used instead of ECLBASE
the same rules of no-mixed-case apply.

GRID

This is the name of an existing GRID/EGRID file for your ECLIPSE model. If you had to create a new grid file
when preparing your ECLIPSE reservoir model for use with enkf, this should point to the new .EGRID file.

Example:

38 Chapter 9. Keywords for the configuration file

ERT Documentation, Release 2.3

—— Load the .EGRID file called MY_GRID.EGRID
GRID MY_GRID.EGRID

NUM_REALIZATIONS

This is just the size of the ensemble, i.e. the number of realizations/members in the ensemble.

Example:

—— Use 200 realizations/members
NUM_REALIZATIONS 200

SCHEDULE_FILE

This keyword should be the name a text file containing the SCHEDULE section of the ECLIPSE data file. It should
be prepared in accordance with the guidelines given in Preparing an ECLIPSE reservoir model for use with enkf.
This SCHEDULE section will be used to control the ECLIPSE simulations. You can optionally give a second
filename, which is the name of file which will be written into the directories for running ECLIPSE.

Example:

Parse MY_SCHEDULE.SCH, call the generated file ECLIPSE_SCHEDULE.SCH
SCHEDULE_FILE MY_SCHEDULE.SCH ECLIPSE_SCHEDULE.SCH

Observe that the SCHEDULE_FILE keyword is only required when you need ERT to stop and restart your sim-
ulations; i.e. when you are using the EnKF algorithm. If you are only using ERT to your simulations; or using
smoother update it is recommended to leave the SCHEDULE_FILE keyword out. In that case you must make sure
that the ECLIPSE datafile correctly includes the SCHEDULE section.

9.4 Basic optional keywords

These keywords are optional. However, they serve many useful purposes, and it is recommended that you read through
this section to get a thorough idea of what’s possible to do with the enkf application.

DATA_KW

The keyword DATA_KW can be used for inserting strings into placeholders in the ECLIPSE data file. For instance,
it can be used to insert include paths.

Example:

—— Define the alias MY_PATH using DATA_KW. Any instances of <MY_PATH> (yes, with
—brackets)

—-— in the ECLIPSE data file will now be replaced with /mnt/my_own_disk/my_reservoir_
—model

-— when running the ECLIPSE jobs.

DATA_KW MY_PATH /mnt/my_own_disk/my_reservoir_model

The DATA_KW keyword is of course optional. Note also that the enkf has some built in magic strings.

9.4. Basic optional keywords 39

ERT Documentation, Release 2.3

DELETE_RUNPATH

When the ert application is running it creates directories for the forward model simulations, one for each realization.
When the simulations are done, ert will load the results into the internal database. By default the realization folders
will be left intact after ert has loaded the results, but using the keyword DELETE_RUNPATH you can request to
have (some of) the directories deleted after results have been loaded.

Example A:

—— Delete simulation directories 0 to 99
DELETE_RUNPATH 0-99

Example B:

—— Delete simulation directories 0 to 10 as well as 12, 15 and 20.
DELETE_RUNPATH O - 10, 12, 15, 20

The DELETE_RUNPATH keyword is optional.

END_DATE

When running a set of models from beginning to end ERT does not now in advance how long the simulation is
supposed to be, it is therefor impossible beforehand to determine which restart file number should be used as target
file, and the procedure used for EnKF runs can not be used to verify that an ECLIPSE simulation has run to the end.

By using the END_DATE keyword you can tell ERT that the simulation should go at least up to the date given by
END_DATE, otherwise they will be regarded as failed. The END_DATE does not need to correspond exactly to
the end date of the simulation, it must just be set so that all simulations which go to or beyond END_DATE are
regarded as successfull.

Example:
:: END_DATE 10/10/2010

With this END_DATE setting all simulations which have gone to at least 10.th of October 2010 are OK.

ENSPATH

The ENSPATH should give the name of a folder that will be used for storage by the enkf application. Note that the
contents of this folder is not intended for human inspection. By default, ENSPATH is set to “storage”.

Example:

-— Use internal storage in /mnt/my_big_enkf_ disk
ENSPATH /mnt/my_big_enkf_disk

The ENSPATH keyword is optional.

HISTORY_SOURCE

In the observation configuration file you can enter observations with the keyword HISTORY_OBSERVATION; this
means that ERT will the observed ‘true’ values from the model history. Practically the historical values can be
fetched either from the SCHEDULE file or from a reference case. What source to use for the historical values can
be controlled with the HISTORY_SOURCE keyword. The different possible values for the HISTORY_SOURCE

40 Chapter 9. Keywords for the configuration file

ERT Documentation, Release 2.3

keyword are:

REFCASE_HISTORY This is the default value for HISTORY_SOURCE, ERT will fetch the historical val-
ues from the xxxH keywords in the refcase summary, e.g. observations of WGOR:OP_1 is based the
WGORH:OP_1 vector from the refcase summary.

REFCASE_SIMULATED In this case the historical values are based on the simulated values from the ref-
case, this is mostly relevant when a you want compare with another case which serves as ‘the truth’.

SCHEDULE Load historical values from the WCONHIST and WCONINJE keywords in the Schedule file.

When setting HISTORY_SOURCE to either REFCASE_SIMULATED or REFCASE_HISTORY you must also set
the REFCASE variable to point to the ECLIPSE data file in an existing reference case (should be created with the
same schedule file as you are using now).

Example:

Use historic data from reference case
HISTORY_SOURCE REFCASE_HISTORY
REFCASE /somefolder/ECLIPSE.DATA

The HISTORY_SOURCE keyword is optional.

REFCASE

With the REFCASE key you can supply ert with a reference case which can be used for observations (see HIS-
TORY_SOURCE), if you want to use wildcards with the SUMMARY keyword you also must supply a REFCASE
keyword. The REFCASE keyword should just point to an existing ECLIPSE data file; ert will then look up and
load the corresponding summary results.

Example:

The REFCASE keyword points to the datafile of an existing ECLIPSE simulation.
REFCASE /path/to/somewhere/SIM_01_BASE.DATA

INSTALL_JOB

The INSTALL_JOB keyword is used to learn the enkf application how to run external applications and scripts, i.e.
defining a job. After a job has been defined with INSTALL_JOB, it can be used with the FORWARD_MODEL
keyword. For example, if you have a script which generates relative permeability curves from a set of parameters,
it can be added as a job, allowing you to do history matching and sensitivity analysis on the parameters defining the
relative permeability curves.

The INSTALL_JOB keyword takes two arguments, a job name and the name of a configuration file for that particular
job.

Example:

—— Define a Lomeland relative permeabilty job.

—— The file jobs/lomeland.txt contains a detailed
—— specification of the job.

INSTALL_JOB LOMELAND jobs/lomeland.txt

The configuration file used to specify an external job is easy to use and very flexible. It is documented in Customiz-
ing the simulation workflow in enkf.

The INSTALL_JOB keyword is optional.

9.4. Basic optional keywords 41

ERT Documentation, Release 2.3

OBS_CONFIG

The OBS_CONFIG key should point to a file defining observations and associated uncertainties. The file should be
in plain text and formatted according to the guidelines given in Creating an observation file for use with enkf.

Example:

—— Use the observations in my_observations.txt
OBS_CONFIG my_observations.txt

The OBS_CONFIG keyword is optional, but for your own convenience, it is strongly recommended to provide an
observation file.

RESULT_PATH

The enkf application will print some simple tabulated results at each report step. The RESULT_PATH keyword
should point to a folder where the tabulated results are to be written. It can contain a %d specifier, which will be
replaced with the report step by enkf. The default value for RESULT_PATH is “results/step_%d”.

Example:

—— Changing RESULT_PATH
RESULT_PATH my_nice_results/step-%d

The RESULT_PATH keyword is optional.

RUNPATH

The RUNPATH keyword should give the name of the folders where the ECLIPSE simulations are executed. It
should contain at least one %d specifier, which will be replaced by the realization number when the enkf creates the
folders. Optionally, it can contain one more %d specifier, which will be replaced by the iteration number.

By default, RUNPATH is set to “simulations/realization-%d”.

Example A:

:: — Giving a RUNPATH with just one %d specifer. RUNPATH /mnt/my_scratch_disk/realization-%d
Example B:

Giving a RUNPATH with two %d specifers.
RUNPATH /mnt/my_scratch_disk/realization-%d/iteration-%d

The RUNPATH keyword is optional.

When running workflows based on external scripts it is necessary to ‘tell’ the external script in some way or another
were all the realisations are located in the filesystem. Since the number of realisations can be quite high this will easily
overflow the commandline buffer; the solution which is used is therefor to let ert write a reagular file which looks like
this:

0 /path/to/realisation0 CASEQ iter
1 /path/to/realisationl CASE1l iter

N /path/to/realisationN CASEN iter

The path to this file can then be passed to the scripts using the magic string <RUNPATH_FILE>. The RUNPATH_FILE

42 Chapter 9. Keywords for the configuration file

ERT Documentation, Release 2.3

will by default be stored as .ert_runpath_list in the same directory as the configuration file, but you can set it to
something else with the RUNPATH_FILE key.

9.5 Keywords controlling the simulations

MIN_REALIZATIONS
MIN_REALIZATIONS is the minimum number of realizations that must have succeeded for the simulation to be
regarded as a success.

MIN_REALIZATIONS can also be used in combination with STOP_LONG_RUNNING, see the documentation
for STOP_LONG_RUNNING for a description of this.

Example:

’MIN_REALIZATIONS 20 ‘

The MIN_REALIZATIONS key can also be set as a percentage of NUM_REALIZATIONS

’MIN_REALIZATIONS 10% ‘

The MIN_REALIZATIONS key is optional, but if it has not been set all the realisations must succeed.

STOP_LONG_RUNNING

The STOP_LONG_RUNNING key is used in combination with the MIN_REALIZATIONS key to control the run-
time of simulations. When STOP_LONG_RUNNING is set to TRUE, MIN_REALIZATIONS is the minimum
number of realizations run before the simulation is stopped. After MIN_REALIZATIONS have succeded success-

fully, the realizatons left are allowed to run for 25% of the average runtime for successfull realizations, and then
killed.

Example:

Stop long running realizations after 20 realizations have succeeded
MIN_REALIZATIONS 20
STOP_LONG_RUNNING TRUE

The STOP_LONG_RUNNING key is optional. The MIN_REALIZATIONS key must be set when
STOP_LONG_RUNNING is set to TRUE.

MAX_RUNTIME

The MAX_RUNTIME keyword is used to control the runtime of simulations. When MAX_RUNTIME is set, a job
is only allowed to run for MAX_RUNTIME, given in seconds. A value of 0 means unlimited runtime.

Example:

—-— Let each realizations run for 50 seconds
MAX_RUNTIME 50

The MAX_RUNTIME key is optional.

9.5. Keywords controlling the simulations 43

ERT Documentation, Release 2.3

9.6 Parameterization keywords

The keywords in this section are used to define a parametrization of the ECLIPSE model. I.e., defining which param-
eters to change in a sensitivity analysis and/or history matching project. For some parameters, it necessary to specify
a prior distribution. See Prior distributions available in enkf for a complete list of available priors.

FIELD

The FIELD keyword is used to parametrize quantities which have extent over the full grid. Both dynamic properties
like pressure, and static properties like porosity, are implemented in terms of FIELD objects. When adding fields in
the config file the syntax is a bit different for dynamic fields (typically solution data from ECLIPSE) and parameter
fields like permeability and porosity.

Dynamic fields
To add a dynamic field the entry in the configuration file looks like this:
:: FIELD <ID> DYNAMIC MIN:X MAX:Y

In this case ID is not an arbitrary string; it must coincide with the keyword name found in the ECLIPSE restart file,
e.g. PRESSURE. Optionally, you can add a minimum and/or a maximum value with MIN:X and MAX:Y.

Example A:

—— Adding pressure field (unbounded)
FIELD PRESSURE DYNAMIC

Example B:

—— Adding a bounded water saturation field
FIELD SWAT DYNAMIC MIN:0.2 MAX:0.95

Parameter fields

A parameter field (e.g. porosity or permeability) is defined as follows:

FIELD ID PARAMETER <ECLIPSE_FILE> INIT_FILES:/path/%d MIN:X MAX:Y OUTPUT_
—TRANSFORM: FUNC INIT_TRANSEFORM:FUNC

Here ID is again an arbitrary string, ECLIPSE_FILE is the name of the file the enkf will export this field to when
running simulations. Note that there should be an IMPORT statement in the ECLIPSE data file corresponding to
the name given with ECLIPSE_FILE. INIT_FILES is a filename (with an embedded %d) to load the initial field
from. Can be RMS ROFF format, ECLIPSE restart format or ECLIPSE GRDECL format.

The input arguments MIN, MAX, INIT_TRANSFORM and OUTPUT_TRANSFORM are all optional. MIN and
MAX are as for dynamic fields.

For Assisted history matching, the variables in ERT should be normally distributed internally - the purpose of
the transformations is to enable working with normally distributed variables internally in ERT. Thus, the optional
arguments INIT_TRANSFORM:FUNC and OUTPUT_TRANSFORM:FUNC are used to transform the user input
of parameter distribution. INIT_TRANSFORM:FUNC is a function which will be applied when they are loaded
to ERT. OUTPUT_TRANSFORM:FUNC is a function which will be applied to the field when it is exported from
ERT, and FUNC is the name of a transformation function to be applied. The avaialble functions are listed below:

“POW10” : This function will raise x to the power of 10: y = 10"x. “TRUNC_POW 10" : This function will raise x
to the power of 10 - and truncate lower values at 0.001. “LOG” : This function will take the NATURAL logarithm
of x: y =In(x). “LN” : This function will take the NATURAL logarithm of x: y = In(x). “LOG10” : This function
will take the log10 logarithm of x: y = logl0(x). “EXP” : This function will calculate y = exp(x). “LNO” : This
function will calculate y = In(x + 0.000001 “EXP0” : This function will calculate y = exp(x) - 0.000001

44 Chapter 9. Keywords for the configuration file

ERT Documentation, Release 2.3

For example, the most common scenario is that underlying log-normal distributed permeability in RMS are trans-
formed to normally distributted in ERT, then you do:

INIT_TRANSFORM:LOG To ensure that the variables which were initially log-normal distributed are transformed
to normal distribution when they are loaded into ert.

OUTPUT_TRANSFORM:EXP To ensure that the variables are reexponentiated to be log-normal distributed before
going out to Eclipse.

If users specify the wrong function name (e.g INIT_TRANSFORM:I_DONT_KNOW), ERT will stop and print all
the valid function names.

Regarding format of ECLIPSE_FILE: The default format for the parameter fields is binary format of the same type
as used in the ECLIPSE restart files. This requires that the ECLIPSE datafile contains an IMPORT statement. The
advantage with using a binary format is that the files are smaller, and reading/writing is faster than for plain text
files. If you give the ECLIPSE_FILE with the extension .grdecl (arbitrary case), enkf will produce ordinary .grdecl
files, which are loaded with an INCLUDE statement. This is probably what most users are used to beforehand - but
we recomend the IMPORT form.

General fields

In addition to dynamic and parameter field there is also a general field, where you have fine grained control over
input/output. Use of the general field type is only relevant for advanced features. The arguments for the general
field type are as follows:

FIELD ID GENERAL FILE_GENERATED_BY_ENKF FILE_LOADED_BY_ENKF <OPTIONS>

The OPTIONS argument is the same as for the parameter field.

GEN_DATA

The GEN_DATA keyword is used when estimating data types which enkf does not know
anything about. GEN_DATA is very similar to GEN_PARAM, but GEN_DATA is used for
data which are updated/created by the forward model like e.g. seismic data. In the main
configuration file the input for a GEN_DATA instance is as follows:

GEN_DATA ID RESULT_FILE:yyy INPUT_FORMAT:xx REPORT_STEPS:10,20
—ECL_FILE:xxx OUTPUT_FORMAT:xx INIT_FILES:/path/files%d,
—TEMPLATE: /template_file TEMPLATE_KEY:magic_string

[

The GEN_DATA keyword has many options; in many cases you can leave many of them
off. We therefor list the required and the optional options separately:

Required GEN_DATA options
* RESULT_FILE - This if the name the file generated by the forward model and

read by ERT. This filename _must_ have a %d as part of the name, that %d will be replaced by report
step when loading.

e INPUT_FORMAT - The format of the file written by the forward model (i.e.
RESULT_FILE) and read by ERT, valid values are ASCII, BINARY_DOUBLE and BINARY_FLOAT.
* REPORT_STEPS A list of the report step(s) where you expect the forward model

to create a result file. Le. if the forward model should create a result file for report steps 50 and 100
this setting should be: REPORT_STEPS:50,100. If you have observations of this GEN_DATA data the
RESTART setting of the corresponding GENERAL_OBSERVATION must match one of the values
given by REPORT_STEPS.

9.6. Parameterization keywords 45

ERT Documentation, Release 2.3

Optional GEN_DATA options
» ECL_FILE - This is the name of file written by enkf to be read by the
forward model.
* OUTPUT_FORMAT - The format of the files written by enkf and read by the

forward model, valid values are ASCII, BINARY_DOUBLE, BINARY_FLOAT and
ASCII_TEMPLATE. If you use ASCII_TEMPLATE you must also supply values for TEMPLATE
and TEMPLATE_KEY.

* INIT_FILES - Format string with ‘%d’ of files to load the initial data from.

Example:

GEN_DATA 4DWOC INPUT_FORMAT:ASCII RESULT_FILE:SimulatedWOCsd.
—txt REPORT_STEPS:10,100

Here we introduce a GEN_DATA instance with name 4DWOC. When the forward model has
run it should create two files with name SimulatedWOC10.txt and SimulatedWOC100.txt.
The result files are in ASCII format, ERT will look for these files and load the content. The
files should be pure numbers - without any header.

#*Observe that the GEN_DATA RESULT_FILE setting must have a %d format

specifier, that will be replaced with the report step..**

CUSTOM_KW

The keyword CUSTOM_KW enables custom data key:value pairs to be stored in ERT storage. Custom KW has
many similarities to Gen KW and Gen Data but is fully defined by the user and contain only key_value pairs.

Example:

CUSTOM_KW GROUP_NAME <input_file>

——GROUP_NAME
This is similar to Gen KW where every keyword is prefixed with the GROUP_NAME like
—this: GROUP_NAME : KEYWORD

——input_file
This is the input file expected to be generated by a forward model.

——Example
CUSTOM_KW COMPOSITION composition.txt

With this setup ERT will expect the file composition.txt to be present in the runpath. This file may look like this

oil 0.5
water 0.2
gas 0.2
unknown 0.1
state good

Every key-value pair must be a string followed by a space and a value. The value can either be a number or a string
(all numbers are interpreted as floats).

After a successful run, ERT will store the COMPOSITION Custom KW in its filesystem and will be available for
every realization. An export will present the values produced as:

46 Chapter 9. Keywords for the configuration file

ERT Documentation, Release 2.3

COMPOSITION:oil

* COMPOSITION:water

* COMPOSITION:gas

* COMPOSITION:unknown

¢ COMPOSITION:state

GEN_KW

The GEN_KW (abbreviation of general keyword) parameter is based on a template file and substitution. In the main
config file a GEN_KW instance is defined as follows:

GEN_KW ID my_template.txt my_eclipse_include.txt my_priors.txt

Here ID is an (arbitrary) unique string, my_template.txt is the name of a template file, my_eclipse_include.txt is the
name of the file which is made for each member based on my_template.txt and my_priors.txt is a file containing a
list of parametrized keywords and a prior distribution for each. Note that you must manually edit the ECLIPSE data
file so that my_eclipse_include.txt is included.

Let us consider an example where the GEN_KW parameter type is used to estimate pore volume multipliers. We
would then declare a GEN_KW instance in the main enkf configuration file:

GEN_KW PAR_MULTPV multpv_template.txt multpv.txt multpv_priors.txt

In the GRID or EDIT section of the ECLIPSE data file, we would insert the following include statement:

INCLUDE
'multpv.txt' /
The template file multpv_template.txt would contain some parametrized ECLIPSE statements:
BOX
1101 30 13 13 /
MULTPV
300+<MULTPV_BOX1> /
ENDBOX
BOX
110 1 30 14 14 /
MULTPV
300+<MULTPV_BOX2> /
ENDBOX

Here, <MULTPV_BOX1> and <MULTPV_BOX2> will act as magic strings. Note that the ‘<’ “>’ must be present
around the magic strings. In this case, the parameter configuration file multpv_priors.txt could look like this:

MULTPV_BOX2 UNIFORM 0.98 1.03
MULTPV_BOX1 UNIFORM 0.85 1.00

In general, the first keyword on each line in the parameter configuration file defines a key, which when found in the
template file enclosed in ‘<’ and ‘>’, is replaced with a value. The rest of the line defines a prior distribution for the
key. See Prior distributions available in enkf for a list of available prior distributions.

Example: Using GEN_KW to estimate fault transmissibility multipliers

Previously enkf supported a datatype MULTFLT for estimating fault transmissibility multipliers. This has now been
depreceated, as the functionality can be easily achieved with the help of GEN_KW. In th enkf config file:

9.6. Parameterization keywords 47

ERT Documentation, Release 2.3

GEN_KW MY-FAULTS MULTFLT.tmpl MULTFLT.INC MULTFLT. txt

Here MY-FAULTS is the (arbitrary) key assigned to the fault multiplers, MULTFLT.tmpl is the template file, which
can look like this:

MULTFLT
'"FAULT1' <FAULT1> /
'"FAULT2' <FAULT2> /
/

and finally the initial distribution of the parameters FAULT1 and FAULT?2 are defined in the file MULTFLT.txt:

FAULT1 LOGUNIF 0.00001 0.1
FAULT2 UNIFORM 0.00 1.0

The various prior distributions available for the GEN_KW keyword are here prior distributions available in ERT
Loading GEN_KW values from an external file

The default use of the GEN_KW keyword is to let the ERT application sample random values for the elements
in the GEN_KW instance, but it is also possible to tell ERT to load a precreated set of data files, this can for
instance be used as a component in a experimental design based workflow. When using external files to initialize
the GEN_KW instances you supply an extra keyword INIT_FILE: /path/to/priors/files%d which tells
where the prior files are:

GEN_KW MY-FAULTS MULTFLT.tmpl MULTFLT.INC MULTFLT.txt INIT_FILES:priors/
—multflt/faultssd
In the example above you must prepare files priors/multfit/faultsO, priors/multfit/faultsl, ... priors/multfit/faultsn

which ert will load when you initialize the case. The format of the GEN_KW input files can be of two varieties:

1. The files can be plain ASCII text files with a list of numbers:

1.25
2.67

The numbers will be assigned to parameters in the order found in the MULTFLT.txt file.

2. Alternatively values and keywords can be interleaved as in:

FAULT1 1.25
FAULT2 2.56

in this case the ordering can differ in the init files and the parameter file.

The heritage of the ERT program is based on the EnKF algorithm, and the EnKF algorithm evolves around Gaussian
variables - internally the GEN_KW variables are assumed to be samples from the N(0,1) distribution, and the
distributions specified in the parameters file are based on transformations starting with a N(0,1) distributed variable.
The slightly awkward consequence of this is that to let your sampled values pass through ERT unmodified you
must configure the distribution NORMAL 0 1 in the parameter file; alternatively if you do not intend to update the
GEN_KW variable you can use the distribution RAW.

GEN_PARAM

The GEN_PARAM parameter type is used to estimate parameters which do not really fit
into any of the other categories. As an example, consider the following situation:

Some external Software (e.g. Cohiba) makes a large vector of random numbers which will
serve as input to the forward model. (It is no requirement that the parameter set is large, but
if it only consists of a few parameters the GEN_KW type will be easier to use.) We want to

48 Chapter 9. Keywords for the configuration file

ERT Documentation, Release 2.3

update this parameter with enkf. In the main configuration file the input for a GEN_PARAM
instance is as follows:

GEN_PARAM ID ECLIPSE_FILE INPUT_FORMAT:xx OUTPUT_FORMAT:xx
—INIT_FILES:/path/to/init/files%d (TEMPLATE:/template_file
—KEY:magic_string)

here ID is the usual unique string identifying this instance and ECLIPSE_FILE is the name
of the file which is written into the run directories. The three arguments GEN_PARAM,
ID and ECLIPSE_FILE must be the three first arguments. In addition you must have
three additional arguments, INPUT_FORMAT, OUTPUT_FORMAT and INIT_FILES.
INPUT_FORMAT is the format of the files enkf should load to initialize, and OUT-
PUT_FORMAT is the format of the files enkf writes for the forward model. The valid
values are:

* ASCII - This is just text file with formatted numbers.
* ASCII_TEMPLATE - An plain text file with formatted numbers, and an arbitrary
header/footer.
* BINARY_FLOAT - A vector of binary float numbers.
e BINARY_DOUBLE - A vector of binary double numbers.
Regarding the different formats - observe the following:
1. Except the format ASCII_TEMPLATE the files contain no header information.
2. The format ASCII_TEMPLATE can only be used as output format.
3. If you use the output format ASCII_TEMPLATE you must also supply a
TEMPLATE:X and KEY:Y option. See documentation of this below.
1. For the binary formats files generated by Fortran can not be used - can
easily be supported on request.

Regarding templates: If you use OUTPUT_FORMAT:ASCII_TEMPLATE you must
also

supply the arguments TEMPLATE:/template/file and KEY:MaGiCKEY. The template file is an arbitrary existing
text file, and KEY is a magic string found in this file. When enkf is running the magic string is replaced with
parameter data when the ECLIPSE_FILE is written to the directory where the simulation is run from. Consider for
example the follwing configuration:

TEMPLATE: /some/file KEY:Magicl23

The template file can look like this (only the Magic123 is special):

Header linel
Header line2

Footer linel
Footer line2

When enkf is running the string Magic123 is replaced with parameter values, and the resulting file will
look like this:

9.6. Parameterization keywords 49

ERT Documentation, Release 2.3

Header linel
Header line2

Footer linel
Footer line2

SURFACE

The SURFACE keyword can be used to work with surface from RMS in the irap format. The surface
keyword is configured like this:

SURFACE TOP OUTPUT_FILE:surf.irap INIT_FILES:Surfaces/surf%d.irap
—BASE_SURFACE:Surfaces/surf0.irap

[

The first argument, TOP in the example above, is the identifier you want to use for this surface in ert.
The OUTPUT_FILE key is the name of surface file which ERT will generate for you, INIT_FILES
points to a list of files which are used to initialize, and BASE_SURFACE must point to one existing
surface file. When loading the surfaces ERT will check that all the headers are compatible. An example

of a surface IRAP file is:

-996 511 50.000000 50.000000

444229.9688 457179.9688 6809537.0000 6835037.0000

260 -30.0000 444229.9688 6809537.0000

0 0 0 0 0 0 0

2735.7461 2734.8909 2736.9705 2737.4048 2736.2539 2737.0122
2740.2644 2738.4014 2735.3770 2735.7327 2733.4944 2731.6448
2731.5454 2731.4810 2730.4644 2730.5591 2729.8997 2726.2217
2721.0996 2716.5913 2711.4338 2707.7791 2705.4504 2701.9187

The surface data will typically be fed into other programs like Cohiba or RMS. The data can be updated
using e.g. the Smoother.

Initializing from the FORWARD MODEL

All the parameter types like FIELD,GEN_KW,GEN_PARAM and SURFACE can be initialized from
the forward model. To achieve this you just add the setting FORWARD_INIT:True to the configuration.
When using forward init the initialization will work like this:

1. The explicit initialization from the case menu, or when you start a
simulation, will be ignored.
1. When the FORWARD_MODEL is complete ERT will try to initialize the node
based on files created by the forward model. If the init fails the job as a whole will fail.
1. If a node has been initialized, it will not be initialized again if you run

again. [Should be possible to force this]

When using FORWARD_INIT:True ERT will consider the INIT_FILES setting to find which file to
initialize from. If the INIT_FILES setting contains a relative filename, it will be interpreted relativt to
the runpath directory. In the example below we assume that RMS has created a file petro.grdecl which

50 Chapter 9. Keywords for the configuration file

ERT Documentation, Release 2.3

contains both the PERMX and the PORO fields in grdecl format; we wish to initialize PERMX and
PORO nodes from these files:

FIELD PORO PARAMETER poro.grdecl INIT_FILES:petro.grdecl
—~FORWARD_INIT:True
FIELD PERMX PARAMETER permx.grdecl INIT_FILES:petro.grdecl

—FORWARD_INIT:True

Observe that forward model has created the file petro.grdecl and the nodes PORO and PERMX
create the ECLIPSE input files poro.grdecl and permx.grdecl, to ensure that ECLIPSE finds the
input files poro.grdecl and permx.grdecl the forward model should contain a job which will
copy/convert petro.grdecl -> (poro.grdecl,permx.grdecl), this job should not overwrite existing ver-
sions of permx.grdecl and poro.grdecl. This extra hoops is not strictly needed in all cases, but strongly
recommended to ensure that you have control over which data is used, and that everything is consistent
in the case where the forward model is run again.

SUMMARY

The SUMMARY keyword is used to add variables from the ECLIPSE summary file to the parametrization. The
keyword expects a string, which should have the format VAR:WGRNAME. Here, VAR should be a quantity, such
as WOPR, WGOR, RPR or GWCT. Moreover, WGRNAME should refer to a well, group or region. If it is a field
property, such as FOPT, WGRNAME need not be set to FIELD.

Example:

—— Using the SUMMARY keyword to add diagnostic variables

SUMMARY WOPR:MY_WELL

SUMMARY RPR:8

SUMMARY Fx —— Use of wildcards requires that you have entered a REFCASE.

The SUMMARY keyword has limited support for ‘*’ wildcards, if your key contains one or more ‘*’ characters all
matching variables from the refcase are selected. Observe that if your summary key contains wildcards you must
supply a refcase with the REFCASE key - otherwise it will fail hard.

Note: Properties added using the SUMMARY keyword are only diagnostic. L.e., they have no effect on the sensi-
tivity analysis or history match.

9.7 Keywords controlling the ES algorithm

See the sub keyword OVERLAP_LIMIT under the :code:*°UPDATE_SETTINGS ‘keyword.

ENKF_BOOTSTRAP

Boolean specifying if we want to resample the Kalman gain matrix in the update step. The purpose is to avoid that
the ensemble covariance collapses. When this keyword is true each ensemble member will be updated based on a
Kalman gain matrix estimated from a resampling with replacement of the full ensemble.

In theory and in practice this has worked well when one uses a small number of ensemble members.

9.7. Keywords controlling the ES algorithm 51

ERT Documentation, Release 2.3

ENKF_CV_FOLDS

Integer specifying how many folds we should use in the Cross-Validation (CV) scheme. Possible choices are the
integers between 2 and the ensemble size (2-fold CV and leave-one-out CV respectively). However, a robust choice
for the number of CV-folds is 5 or 10 (depending on the ensemble size).

Example:

—— Setting the number of CV folds equal to 5
ENKF_CV_FOLDS 5

Requires that the ENKF_LOCAL_CV keyword is set to TRUE

ENKF_FORCE_NCOMP

Bool specifying if we want to force the subspace dimension we want to use in the EnKF updating scheme (SVD-
based) to a specific integer. This is an alternative to selecting the dimension using ENKF_TRUNCATION or
ENKF_LOCAL_CV.

Example:

—-— Setting the the subspace dimension to 2
ENKF_FORCE_NCOMP TRUE

ENKF_NCOMP 2

ENKF_LOCAL_CV

Boolean specifying if we want to select the subspace dimension in the SVD-based EnKF algorithm using Cross-
Validation (CV) [1]. This is a more robust alternative to selecting the subspace dimension based on the estimated
singular values (See ENKF_TRUNCATION), because the predictive power of the estimated Kalman gain matrix is
taken into account.

Example:

—— Select the subspace dimension using Cross-Validation
ENKF_LOCAL_CV TRUE

ENKF_PEN_PRESS

Boolean specifying if we want to select the subspace dimension in the SVD-based EnKF algorithm using Cross-
Validation (CV), and a penalised version of the predictive error sum of squares (PRESS) statistic [2]. This is
recommended when overfitting is a severe problem (and when the number of ensemble members is small)

Example:

—— Select the subspace dimension using Cross-Validation
ENKF_LOCAL_CV TRUE

—— Using penalised PRESS statistic
ENKF_PEN_PRESS TRUE

52 Chapter 9. Keywords for the configuration file

ERT Documentation, Release 2.3

ENKF_MODE

The ENKF_MODE keyword is used to select which EnKF algorithm to use. Use the value STANDARD for the
original EnKF algorithm, or SQRT for the so-called square root scheme. The default value for ENKF_MODE is
STANDARD.

Example A:

—— Using the square root update
ENKF_MODE SQRT

Example B:

—— Using the standard update
ENKF_MODE STANDARD

The ENKF_MODE keyword is optional.

ENKF_MERGE_OBSERVATIONS

If you use the ENKF_SCHED_FILE option to jump over several dates at a time you can choose whether you want
to use all the observations in between, or just the final. If set to TRUE, all observations will be used. If set to
FALSE, only the final observation is used. The default value for ENKF_MERGE_OBSERVATIONS is FALSE.

Example:

—— Merge observations
ENKF_MERGE_OBSERVATIONS TRUE

ENKF_NCOMP

Integer specifying the subspace dimension. Requires that ENKF_FORCE_NCOMP is TRUE.

ENKF_RERUN

This is a boolean switch - TRUE or FALSE. Should the simulation start from time zero after each update.

ENKF_SCALING

This is a boolean switch - TRUE (Default) or FALSE. If TRUE, we scale the data ensemble matrix to unit variance.
This is generally recommended because the SVD-based EnKF algorithm is not scale invariant.

ENKF_TRUNCATION

Truncation factor for the SVD-based EnKF algorithm (see Evensen, 2007). In this algorithm, the forecasted data
will be projected into a low dimensional subspace before assimilation. This can substantially improve on the results
obtained with the EnKF, especially if the data ensemble matrix is highly collinear (Saetrom and Omre, 2010). The
subspace dimension, p, is selected such that

9.7. Keywords controlling the ES algorithm 53

ERT Documentation, Release 2.3

\frac{\sum_{i=1}"{p} s_i"2}{\sum_{i=1}"r s_i"2} \geq \mathrm{ENKF_TRUNCATION},

where si is the ith singular value of the centered data ensemble matrix and r is the rank of this matrix. This criterion
is similar to the explained variance criterion used in Principal Component Analysis (see e.g. Mardia et al. 1979).

The default value of ENKF_TRUNCATION is 0.99. If ensemble collapse is a big problem, a smaller value should
be used (e.g 0.90 or smaller). However, this does not guarantee that the problem of ensemble collapse will disappear.
Note that setting the truncation factor to 1.00, will recover the Standard-EnKF algorithm if and only if the covariance
matrix for the observation errors is proportional to the identity matrix.

STD_SCALE_CORRELATED_OBS

With this kewyord you can instruct ERT to use the simulated data to estimate the correlations in the observations, and
then inflate the observation standard deviation as a way to estimate the real information content in the observations.
The method is based on PCA, the scaling factor is calculated as:

\sgrt{\frac{N_{\sigma}}{N_{\mathrm{obs}}}

where N_{sigma} is the number of singular components, at (fixed) truncation 0.95 and $N_{mathrm{obs}}$
is the number of observations. The STD_SCALE_CORRELATED_OBS keyword will flatten all your ob-
servations, including temporal and spatial correlations. For more fine grained control you can use the
STD_CALE_CORRELATED_OBS workflow job, or even write your own plugins.

UPDATE_LOG_PATH

A summary of the data used for updates are stored in this directory.

References
* Evensen, G. (2007). “Data Assimilation, the Ensemble Kalman Filter”, Springer.
* Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). “Multivariate Analysis”’, Academic Press.

¢ Saetrom, J. and Omre, H. (2010). “Ensemble Kalman filtering with shrinkage regression techniques”, Compu-
tational Geosciences (online first).

9.8 Analysis module

The final EnKF linear algebra is performed in an analysis module. The keywords to load, select and modify the
analysis modules are documented here.

ANALYSIS_LOAD

The ANALYSIS_LOAD key is the main key to load an analysis module:

ANALYSIS_LOAD ANAME analysis.so

The first argument ANAME is just an arbitrary unique name which you want to use to refer to the module later.
The second argument is the name of the shared library file implementing the module, this can either be an absolute
path as /path/to/my/module/ana.so or a relative file name as analysis.so. The module is loaded with dlopen() and
the normal shared library search semantics applies.

54 Chapter 9. Keywords for the configuration file

ERT Documentation, Release 2.3

ANALYSIS_SELECT

This command is used to select which analysis module to actually use in the updates:

ANALYSIS_SELECT ANAME

Here ANAME is the name you have assigned to the module when loading it with ANALYSIS_LOAD.

ANALYSIS_SET_ VAR

The analysis modules can have internal state, like e.g. truncation cutoff values, these values can be manipulated
from the config file using the ANALYSIS_SET_VAR keyword:

ANALYSIS_SET_VAR ANAME ENKF_TRUNCATION 0.97

To use this you must know which variables the module supports setting this way. If you try to set an unknown
variable you will get an error message on stderr.

ANALYSIS_COPY

With the ANALYSIS_COPY keyword you can create a new instance of a module. This can be convenient if you
want to run the same algorithm with the different settings:

ANALYSIS_LOAD Al analysis.so
ANALYISIS_COPY Al A2

We load a module analysis.so and assign the name Al; then we copy Al -> A2. The module Al and A2 are now
100% identical. We then set the truncation to two different values:

ANALYSIS_SET_VAR Al ENKF_TRUNCATION 0.95
ANALYSIS_SET_VAR A2 ENKF_TRUNCATION 0.98

Developing analysis modules

In the analysis module the update equations are formulated based on familiar matrix expressions, and no knowledge of
the innards of the ERT program are required. Some more details of how modules work can be found here modules.txt.
In principle a module is ‘just’ a shared library following some conventions, and if you are sufficiently savy with gcc
you can build them manually, but along with the ert installation you should have utility script ert_module which can
be used to build a module; just write ert_module without any arguments to get a brief usage description.

9.9 Advanced optional keywords

The keywords in this section, controls advanced features of the enkf application. Insight in the internals of the enkf
application and/or ECLIPSE may be required to fully understand their effect. Moreover, many of these keywords are
defined in the site configuration, and thus optional to set for the user, but required when installing the enkf application
at a new site.

ADD_FIXED_LENGTH_SCHEDULE_KW

Real low level fix for some SCHEDULE parsing problems.

9.9. Advanced optional keywords 55

ERT Documentation, Release 2.3

DEFINE

With the DEFINE keyword you can define key-value pairs which will be substituted in the rest of the configuration
file. The DEFINE keyword expects two arguments: A key and a value to replace for that key. Later instances of the
key enclosed in ‘<’ and >’ will be substituted with the value. The value can consist of several strings, in that case
they will be joined by one single space.

Example:

—— Define ECLIPSE_PATH and ECLIPSE_BASE

DEFINE ECLIPSE_PATH /path/to/eclipse/run

DEFINE ECLIPSE_BASE STATFO02

DEFINE KEY VALUE1 VALUE2 VALUE3 VALUEA4

—— Set the GRID in terms of the ECLIPSE_PATH
—-— and ECLIPSE_BASE keys.
GRID <ECLIPSE_PATH>/<ECLIPSE_BASE>.EGRID

Observe that when you refer to the keys later in the config file they must be enclosed in ‘<’ and ‘>’. Furthermore,
a key-value pair must be defined in the config file before it can be used. The final key define above KEY, will be
replaced with VALUE1 VALUE2 VALUE3 VALUE4 - i.e. the extra spaces will be discarded.

TIME_MAP

Normally the mapping between report steps and true dates is inferred by ERT indirectly by loading the ECLIPSE
summary files. In cases where you do not have any ECLIPSE summary files you can use the TIME_MAP keyword
to specify a file with dates which are used to establish this mapping:

Example:

—— Load a list of dates from external file: "time_map.txt"
TIME_MAP time_map.txt

The format of the TIME_MAP file should just be a list of dates formatted as dd/mm/yyyy. The example file below
has four dates:

01/01/2000
01/07/2000
01/01/2001
01/07/2001

SCHEDULE_PREDICTION_FILE

This is the name of a schedule prediction file. It can contain %d to get different files for different members. Observe
that the ECLIPSE datafile should include only one schedule file, even if you are doing predictions.

9.10 Keywords related to running the forward model

56 Chapter 9. Keywords for the configuration file

ERT Documentation, Release 2.3

FORWARD_MODEL

The FORWARD_MODEL keyword is used to define how the simulations are executed. E.g., which version of
ECLIPSE to use, which rel.perm script to run, which rock physics model to use etc. Jobs (i.e. programs and scripts)
that are to be used in the FORWARD_MODEL keyword must be defined using the INSTALL_JOB keyword. A set
of default jobs are available, and by default FORWARD_MODEL takes the value ECLIPSE100.

The FORWARD_MODEL keyword expects a series of keywords, each defined with INSTALL_JOB. The enkf will
execute the jobs in sequentially in the order they are entered. Note that the ENKF_SCHED_FILE keyword can be
used to change the FORWARD_MODEL for sub-sequences of the run.

Example A:

—— Suppose that "MY_RELPERM_SCRIPT" has been defined with
—— the INSTALL_JOB keyword. This FORWARD_MODEL will execute
—— "MY_RELPERM_SCRIPT" before ECLIPSE100.

FORWARD_MODEL MY_RELPERM_SCRIPT ECLIPSE100

Example B:

—— Suppose that "MY_ RELPERM_SCRIPT" and "MY_ROCK_PHYSICS_MODEL"
—— has been defined with the INSTALL_JOB keyword.

—— This FORWARD_MODEL will execute "MY_RELPERM_SCRIPT", then

—-— "ECLIPSE100" and in the end "MY_ ROCK_PHYSICS_MODEL".
FORWARD_MODEL MY_RELPERM_SCRIPT ECLIPSE100 MY_ROCK_PHYSICS_MODEL

For advanced jobs you can pass string arguments to the job using a KEY=VALUE based approach, this is further
described in: passing arguments. In available jobs in enkf you can see a list of the jobs which are available.

JOB_SCRIPT

Running the forward model from enkf is a multi-level process which can be summarized as follows:
1. A Python module called jobs.py is written and stored in the directory where

the forward simulation is run. The jobs.py module contains a list of job-elements, where each element is a Python
representation of the code entered when installing the job.

1. The enkf application submits a Python script to the enkf queue system, this
script then loads the jobs.py module to find out which programs to run, and how to run them.
1. The job_script starts and monitors the individual jobs in the jobs.py

module.

The JOB_SCRIPT variable should point at the Python script which is managing the forward model.
This should normally be set in the site wide configuration file.

QUEUE_SYSTEM

The keyword QUEUE_SYSTEM can be used to control where the simulation jobs are executed. It can take the
values LSF, TORQUE, RSH and LOCAL.

The LSF option will submit jobs to the LSF cluster at your location, and is recommended whenever LSF is available.

The TORQUE option will submit jobs to the TORQUE a torque based system, using the commands qsub, gstat etc.,
if available.

9.10. Keywords related to running the forward model 57

ERT Documentation, Release 2.3

If you do not have access to LSF or TORQUE you can submit to your local workstation using the LOCAL option
and to homemade cluster of workstations using the RSH option. All of the queue systems can be further configured,
see separate sections.

Example:

—— Tell ert to use the LSF cluster.
QUEUE_SYSTEM LSF

The QUEUE_SYSTEM keyword is optional, and usually defaults to LSF (this is site dependent).

9.11 Configuring LSF access

The LSF system is the most useful of the queue alternatives, and also the alternative with most options. The most
important options are related to how ert should submit jobs to the LSF system. Essentially there are two methods ert
can use when submitting jobs to the LSF system:

1. For workstations which have direct access to LSF ert can submit directly with no further configuration. This is
preferred solution, but unfortunately not very common.

2. Alternatively ert can issue shell commands to bsub/bjobs/bkill to submit jobs. These shell commands can be
issued on the current workstation, or alternatively on a remote workstation using ssh.

The main switch between alternatives 1 and 2 above is the LSF_SERVER option.

LSF_SERVER

By using the LSF_SERVER option you essentially tell ert two things about how jobs should be submitted to LSF:
1. You tell ert that jobs should be submitted using shell commands.
2. You tell ert which server should be used when submitting

So when your configuration file has the setting:

LSF_SERVER be-grid01

ert will use ssh to submit your jobs using shell commands on the server be-gridO1. For this to work you must have
passwordless ssh to the server be-gridO1. If you give the special server name LOCAL ert will submit using shell
commands on the current workstation.

bsub/bjobs/bkill options

By default ert will use the shell commands bsub,bjobs and bkill to interact with the queue system, i.e. whatever
binaries are first in your PATH will be used. For fine grained control of the shell based submission you can tell ert
which programs to use:

QUEUE_OPTION LSF BJOBS_CMD /path/to/my/bjobs
QUEUE_OPTION LSF BSUB_CMD /path/to/my/bsub

Example 1

LSF_SERVER be-grid01

QUEUE_OPTION LSF BJOBS_CMD /path/to/my/bjobs
QUEUE_OPTION LSF BSUB_CMD /path/to/my/bsub

In this example we tell ert to submit jobs from the workstation be-grid01 using custom binaries for bsub and bjobs.

Example 2

58 Chapter 9. Keywords for the configuration file

ERT Documentation, Release 2.3

LSF_SERVER LOCAL

In this example we will submit on the current workstation, without using ssh first, and we will use the default bsub
and bjobs executables. The remaining LSF options apply irrespective of which method has been used to submit the
jobs.

LSF_QUEUE

The name of the LSF queue you are running ECLIPSE simulations in.

9.12 Configuring TORQUE access

The TORQUE system is the only available system on some clusters. The most important options are related to how
ert should submit jobs to the TORQUE system.

¢ Currently, the TORQUE option only works when the machine you are logged into have direct access to the
queue system. ert then submit directly with no further configuration.

The most basic invocation is in other words:

QUEUE_SYSTEM TORQUE

qsub/qgstat/qdel options

By default ert will use the shell commands qsub,gstat and qdel to interact with the queue system, i.e. whatever
binaries are first in your PATH will be used. For fine grained control of the shell based submission you can tell ert
which programs to use:

QUEUE_SYSTEM TORQUE

QUEUE_OPTION TORQUE QSUB_CMD /path/to/my/gsub
QUEUE_OPTION TORQUE QSTAT_CMD /path/to/my/gstat
QUEUE_OPTION TORQUE QDEL_CMD /path/to/my/qgdel

In this example we tell ert to submit jobs using custom binaries for bsub and bjobs.
Name of queue

The name of the TORQUE queue you are running ECLIPSE simulations in.

QUEUE_OPTION TORQUE QUEUE name_of_dgueue

Name of cluster (label)

The name of the TORQUE cluster you are running ECLIPSE simulations in. This might be a label (serveral clusters),
or a single one, as in this example baloo.

QUEUE_OPTION TORQUE CLUSTER_LABEL baloo

Max running jobs

The queue option MAX_RUNNING controls the maximum number of simultaneous jobs submitted to the queue when
using (in this case) the TORQUE option in QUEUE_SYSTEM.

9.12. Configuring TORQUE access 59

ERT Documentation, Release 2.3

QUEUE_SYSTEM TORQUE

—— Submit no more than 30 simultaneous Jjobs
—— to the TORQUE cluster.

QUEUE_OPTION TORQUE MAX_ RUNNING 30

Queue options controlling number of nodes and CPUs

When using TORQUE, you must specify how many nodes a single job is should to use, and how many CPUs
per node. The default setup in ert will use one node and one CPU. These options are called NUM_NODES and
NUM_CPUS_PER_NODE.

If the numbers specified is higher than supported by the cluster (i.e. use 32 CPUs, but no node has more than 16), the
job will not start.

If you wish to increase these number, the program running (typically ECLIPSE) will usually also have to be told to
correspondingly use more processing units (keyword PARALLEL)

QUEUE_SYSTEM TORQUE
—— Use more nodes and CPUs
in the TORQUE cluster per Jjob submitted
—— This should (in theory) allow for 24 processing
—-— units to be used by eg. ECLIPSE
QUEUE_OPTION TORQUE NUM_NODES 3
QUEUE_OPTION TORQUE NUM_CPUS_PER_NODE 8

Keep output from qsub

Sometimes the error messages from gsub can be useful, if something is seriously wrong with the environment or setup.
To keep this output (stored in your home folder), use this:

QUEUE_OPTION TORQUE KEEP_QSUB_OUTPUT 1

** Slow submit to torque **

To be more gentle with the torqueue system you can instruct the driver to sleep for every submit request. The argument
to the SUBMIT_SLEEP is the number of seconds to sleep for every submit, can be a fraction like 0.5.

QUEUE_OPTION TORQUE SUBMIT_SLEEP 0.25

** Torque debug log **

You can ask the torqueu driver to store a debug log of the jobs submitted, and the resulting job id. This is done with
the queue option DEBUG_OUTPUT:

’QUEUE_OPTION TORQUE DEBUG_OUTPUT torque_log.txt

9.13 Configuring the RSH queue

RSH_HOST

You can run the forward model in enkf on workstations using remote-shell commands. To use the RSH queue
system you must first set a list of computers which enkf can use for running jobs:

RSH_HOST computerl:2 computer2:2 large_computer:8

60 Chapter 9. Keywords for the configuration file

ERT Documentation, Release 2.3

Here you tell enkf that you can run on three different computers: computerl, computer2 and large_computer. The
two first computers can accept two jobs from enkf, and the last can take eight jobs. Observe the following when
using RSH:

You must have passwordless login to the computers listed in RSH_HOST otherwise it will fail hard. enkf will not
consider total load on the various computers; if have said it can take two jobs, it will get two jobs, irrespective of
the existing load.

RSH_COMMAND

This is the name of the executable used to invoke remote shell operations. Will typically be either rsh or ssh. The
command given to RSH_COMMAND must either be in PATH or an absolute path.

MAX_RUNNING_RSH

The keyword MAX_RUNNING_RSH controls the maximum number of simultaneous jobs running when using the
RSH option in QUEUE_SYSTEM. It MAX_RUNNING_RSH exceeds the total capacity defined in RSH_HOST, it
will automatically be truncated to that capacity.

Example:

—— No more than 10 simultaneous jobs
-— running via RSH.
MAX_RUNNING_RSH 10

9.14 Keywords related to plotting

PLOT_DRIVER

This is the name of the sub system used for creating plots. The default system is called ‘PLPLOT” - all the other
options regarding plotting are sub options which are only relevant when you are using PLPLOT. In addition to
PLPLOT you can chose the value ‘TEXT’; this will actually not produce any plots, just textfiles which can be used
for plotting with your favorite plotting program. This is particularly relevant if you have some special requirements
to the plots.

PLOT_ERRORBAR

Should errorbars on the observations be plotted?

PLOT_ERRORBAR_MAX

When plotting summary vectors for which observations have been ‘installed” with the OBS_CONFIG keyword, ert
will plot the observed values. If you have less than PLOT_ERRORBAR_MAX observations ert will use errorbars to
show the observed values, otherwise it will use two dashed lines indicating +/- one standard deviation. This option
is only meaningful when PLOT_PLOT_ERRORBAR is activated.

To ensure that you always get errorbars you can set PLOT_ERRORBAR_MAX to a very large value, on the other
hand setting PLOT_ERRORBAR_MAX to 0 will ensure that ert always plots observation uncertainty using dashed

9.14. Keywords related to plotting 61

ERT Documentation, Release 2.3

lines of +/- one standard deviation.

The setting here will also affect the output when you are using the TEXT driver to plot.

PLOT_HEIGHT

When the PLPLOT driver creates a plot file, it will have the height (in pixels) given by the PLOT_HEIGHT keyword.
The default value for PLOT_HEIGHT is 768 pixels.

PLOT_REFCASE

Boolean variable which is TRUE if you want to add the refcases to the plots.

Example:

PLOT_REFCASE TRUE

REFCASE_LIST

Provide one or more Eclipse .DATA files for a refcase to be added in the plots. This refcase will be plotted in
different colours. The summary files related to the refcase should be in the same folder as the refcase.

Example:

REFCASE_LIST /path/to/refcasel/filel.DATA /path/to/refcase2/file2.DATA

PLOT_SETTINGS

The PLOT_SETTINGS keyword is a “master keyword” which can be used to configure some aspects of the plotting.
These settings will affect the default behaviour when you create a new plot, you can still changes these settings
interactively.

When using the PLOT__SETTINGS keyword you supply a secondary keyword and a values as the tow arguments:

PLOT_SETTINGS SHOW_REFCASE False

Will make sure that your plots are created without the refcase plotted as default. The available secondary keys are:

SHOW_REFCASE : Default True SHOW_HISTORY : Default True

RFT_CONFIG

RFT_CONFIGS argument is a file with the name of the rfts followed by date (day month year) Ex.

RFT_CONFIG ../models/wells/rft/WELLNAME_AND_RFT_TIME.txt

Where the contents of the file is something like

62 Chapter 9. Keywords for the configuration file

ERT Documentation, Release 2.3

be-linappl6 (inmyr) —-/models/wells/rft 34> more WELLNAME_AND_RFT_TIME.txt
A-1HP 06 05 1993
A-9HW 31 07 1993
C-1HP 11 12 2007
C-5HP 21 12 1999
C-6HR 09 11 1999
D-4HP 10 07 2003
K-3HW 09 02 2003
K-6HW 08 11 2002
K-7HW 21 04 2005
D-6HP 22 04 2006

RFTPATH

RFTPATHs argument is the path to where the rft-files are located

RFTPATH ../models/wells/rft/

With the keyword HOOK_WORKFLOW you can configure workflow ‘hooks’; meaning workflows which will be run
automatically at certain points during ERTs execution. Currently there are four points in ERTs flow of execution
where you can hook in a workflow, before the simulations start, PRE_STIMULATION; after all the simulations have
completed POST__SIMULATION; before the update step, PRE_UPDATE and after the update step, POST_UPDATE.
The POST_SIMULATION hook is typically used to trigger QC workflows:

HOOK_WORKFLOW initWELOW PRE_SIMULATION
HOOK_WORKFLOW preUpdateWEFLOW PRE_UPDATE
HOOK_WORKFLOW postUpdateWFLOW POST_UPDATE
HOOK_WORKFLOW QC_WEFLOW1 POST_SIMULATION
HOOK_WORKFLOW QC_WFELOW2 POST_SIMULATION

In this example the workflow initWFLOW will run after all the simulation directories have been created, just before
the forward model is submitted to the queue. The workflow preUpdateWFLOW will be run before the update step
and postUpdateWFLOW will be run after the update step. When all the simulations are complete the two workflows
QC_WFLOW1 and QC_WFLOW2 will be run.

Observe that the workflows being ‘hooked in” with the HOOK_WORKF LOW must be loaded with the LOAD_WORKFLOW
keyword.

Currently, PRE_UPDATE and POST_UPDATE are only available from python.

9.15 Manipulating the Unix environment

The two keywords SETENV and UPDATE_PATH can be used to manipulate the Unix environment of the ERT process,
tha manipulations only apply to the running ERT instance, and are not applied to the shell.

SETENV

You can use the SETENV keyword to alter the unix environment enkf is running in. This is probably most relevant
for setting up the environment for the external jobs invoked by enkf.

Example:

9.15. Manipulating the Unix environment 63

ERT Documentation, Release 2.3

-— Setting up LSF

SETENV LSF_BINDIR /prog/LSF/7.0/1inux2.6-glibc2.3-x86_64/bin
SETENV LSF_LIBDIR /prog/LSF/7.0/1inux2.6-glibc2.3-x86_64/11ib
SETENV LSF_UIDDIR /prog/LSF/7.0/1inux2.6-glibc2.3-x86_64/1ib/uid
SETENV LSF_SERVERDIR /prog/LSF/7.0/linux2.6-glibc2.3-x86_64/etc
SETENV LSF_ENVDIR /prog/LSF/conf

Observe that the SETENV command is not as powerful as the corresponding shell utility. In particular you can not
use $VAR to refer to the existing value of an environment variable. To add elements to the PATH variable it is easier
to use the UPDATE_PATH keyword.

UPDATE_PATH

The UPDATE_PATH keyword will prepend a new element to an existing PATH variable. L.e. the config

’UPDATE_PATH PATH /some/funky/path/bin

will be equivalent to the shell command:

setenv PATH /some/funky/path/bin:$PATH

The whole thing is just a workaround because we can not use $PATH.

The UPDATE_SETTINGS keyword is a super-keyword which can be used to control parameters which apply to the
Ensemble Smoother update algorithm. The :code:“UPDATE_SETTINGS ‘currently supports the two subkeywords:

OVERLAP_LIMIT Scaling factor used when detecting outliers. Increasing this factor means that
more observations will potentially be included in the assimilation. The default value is 3.00..

Including outliers in the Smoother algorithm can dramatically increase the coupling between the
ensemble members. It is therefore important to filter out these outlier data prior to data assimilation.
An observation, textstyle d"o_i, will be classified as an outlier if

|[d"o_1i - \bar{d}_i| > \mathrm{ENKF_ALPHA} \left(s_{d_i} + \sigma_{d"o_1i}
—\right),

where textstyleboldsymbol{d}”o is the vector of observed data, textstyleboldsymbol{bar{d}} is
the average of the forcasted data ensemble, textstyleboldsymbol{s_{d}} is the vector of estimated
standard deviations for the forcasted data ensemble, and textstyleboldsymbol{s_{d}"o} is the vector
standard deviations for the observation error (specified a priori).

STD_CUTOFF If the ensemble variation for one particular measurment is below this limit the ob-
servation will be deactivated. he default value for this cutoff is le-6.

Observe that for the updates many settings should be applied on the analysis module in question.

UMASK

The umask is a concept used by Linux to controll the permissions on newly created files. By default the files
created by ert will have the default permissions of your account, but by using the keyword UMASK you can alter
the permissions of files created by ert.

To determine the initial permissions on newly created files start with the initial permissions -rw-rw-rw- (octal 0666)
for files and -rwxrwxrwx (octal 0777) for directories, and then ~subtract the current umask setting. So if you wish
the newly created files to have permissions -rw-r—— you need to subtract write permissions for group and read and
write permissions for others - corresponding to umask 0026.

64 Chapter 9. Keywords for the configuration file

ERT Documentation, Release 2.3

’UMASK 0022 ‘

We remove write permissions from group and others, implying that everyone can read the files and directories
created by ert, but only the owner can write to them. Also everyone can execute the directories (i.e. list the content).

UMASK O ‘

No permissions are removed, i.e. everyone can do everything with the files and directories created by ert.

The umask setting in ert is passed on to the forward model, and should apply to the files/directories created by the
forward model also. However - the executables in the forward model can in principle set it’s own umask setting or
alter permissions in another way - so there is no guarantee that the umask setting will apply to all files created by
the forward model.

The octal permissions are based on three octal numbers for owner, group and others, where each value is based on
adding the constants:

1: Execute permission 2: Write permission 4: Read permission
So an octal permission of 0754 means:

e Owner(7) can execute(1), write(2) and read(4).

* Group(5) can execute(1) and read(4).
e Others(2) can read(4)

9.15. Manipulating the Unix environment 65

ERT Documentation, Release 2.3

66

Chapter 9. Keywords for the configuration file

CHAPTER
TEN

10.1 Version 2.3

10.1.1 2.3 ert application

PR: 67 - 162

10.1.2 2.3 libres

PR: 105 - 411

10.1.3 2.3 libecl

PR: 170 - 506

10.2 Version 2.2

10.2.1 2.2: ert application

Version 2.2.1 September 2017 PR: 1 - 66 Cherry-picked: 70
Misc:

» Using res_config changes from libres [16]

¢ files moved from libecl to libres: [51]

* replaced ert.enkf with res.enkf [56]

¢ Created ErtVersion: [61, 66].

» Using res_config: [62]

¢ Removed dead workflow files: [64]
Build and testing:

* Cleanup after repo split [1, 2,3 ,4,5, 6]

* Added test_install functionality [7]

RELEASE NOTES FOR ERT

¢ Added travis build script for libecl+libres+ert: [15, 17, 18, 19, 21, 26, 27, 39, 52-55, 63]

67

https://github.com/Statoil/ert/pull/70/
https://github.com/Statoil/ert/pull/16/
https://github.com/Statoil/ert/pull/51
https://github.com/Statoil/ert/pull/56/
https://github.com/Statoil/ert/pull/61/
https://github.com/Statoil/ert/pull/66/
https://github.com/Statoil/ert/pull/62/
https://github.com/Statoil/ert/pull/64/
https://github.com/Statoil/ert/pull/1/
https://github.com/Statoil/ert/pull/2/
https://github.com/Statoil/ert/pull/3/
https://github.com/Statoil/ert/pull/4/
https://github.com/Statoil/ert/pull/5/
https://github.com/Statoil/ert/pull/6/
https://github.com/Statoil/ert/pull/7/
https://github.com/Statoil/ert/pull/15/
https://github.com/Statoil/ert/pull/17/
https://github.com/Statoil/ert/pull/18/
https://github.com/Statoil/ert/pull/19/
https://github.com/Statoil/ert/pull/21/
https://github.com/Statoil/ert/pull/26/
https://github.com/Statoil/ert/pull/27/
https://github.com/Statoil/ert/pull/39/
https://github.com/Statoil/ert/pull/52/
https://github.com/Statoil/ert/pull/55/
https://github.com/Statoil/ert/pull/63/

ERT Documentation, Release 2.3

MacOS build error: [28].
* Created simple gui_test bin/gui_test [32]
* cmake - create symlink: [41, 42, 43]
* Initial Python3 testing [58, 60].
Queue and running:
* Added base run model - gui model updates: [20].
¢ Added single simulation pretest running [33, 36, 50, 67].

¢ Add run_id to simulation batches.

10.2.2 2.2: libres

Version 2.2.9 September 2017 PR: 1 - 104 Cherry-picks: [106, 108, 110, 118, 121, 122, 123, 127]
Misc:
* implement legacy from ert.xxx [1, 20, 21, 22]
* Setting up libres_util and moving ert_log there [13, 44, 48].
* Added subst_list + block_fs functionality to res_util - moved from libecl [27, 68, 74].
* Do not generate parameters.txt if no GEN_KW is specified.[89]
* Started using RES_VERSION [91].
CONFIG_PATH subtitution settings - bug fixed[43, 96].
» Will load summary if GEN_DATA is present [123, 127]

Build and test fixes:
» Simple functionality to do post-install testing[3]
» Use libecl as cmake target[6,°15 <https://github.com/Statoil/res/pull/15/>°_]
¢ removed stale binaries [7, 9]
e travis will build all repositories [23].
e Travis + OSX [69, 72]
* Remove statoil specific settings from build sytem [38].
* Travis split for parallell builds [79].
Config refactor:

In this release cycle there have been large amount of changes to the code configuring the ERT state;
the purpose of these changes has been to prepare for further development with Everest. The main net
change is that a new configuration object - res_config has been created ,which holds all the configuration
subobjects:

[10, 14, 35, 39, 45, 52, 54, 58-62, 66, 75]

Queue layer:

* Improved logging [17, 37].

68 Chapter 10. Release notes for ERT

https://github.com/Statoil/ert/pull/28/
https://github.com/Statoil/ert/pull/32/
https://github.com/Statoil/ert/pull/41/
https://github.com/Statoil/ert/pull/42/
https://github.com/Statoil/ert/pull/43/
https://github.com/Statoil/ert/pull/58/
https://github.com/Statoil/ert/pull/60/
https://github.com/Statoil/ert/pull/20/
https://github.com/Statoil/ert/pull/33/
https://github.com/Statoil/ert/pull/36/
https://github.com/Statoil/ert/pull/50/
https://github.com/Statoil/ert/pull/67/
https://github.com/Statoil/res/pull/106/
https://github.com/Statoil/res/pull/108/
https://github.com/Statoil/res/pull/110/
https://github.com/Statoil/res/pull/118/
https://github.com/Statoil/res/pull/121/
https://github.com/Statoil/res/pull/122/
https://github.com/Statoil/res/pull/123/
https://github.com/Statoil/res/pull/127/
https://github.com/Statoil/res/pull/1/
https://github.com/Statoil/res/pull/20/
https://github.com/Statoil/res/pull/21/
https://github.com/Statoil/res/pull/22/
https://github.com/Statoil/res/pull/13/
https://github.com/Statoil/res/pull/44/
https://github.com/Statoil/res/pull/48/
https://github.com/Statoil/res/pull/27/
https://github.com/Statoil/res/pull/68/
https://github.com/Statoil/res/pull/74/
https://github.com/Statoil/res/pull/89/
https://github.com/Statoil/res/pull/91/
https://github.com/Statoil/res/pull/43/
https://github.com/Statoil/res/pull/96/
https://github.com/Statoil/res/pull/123/
https://github.com/Statoil/res/pull/127/
https://github.com/Statoil/res/pull/3/
https://github.com/Statoil/res/pull/6/
https://github.com/Statoil/res/pull/15/
https://github.com/Statoil/res/pull/7/
https://github.com/Statoil/res/pull/9/
https://github.com/Statoil/res/pull/23/
https://github.com/Statoil/res/pull/69/
https://github.com/Statoil/res/pull/72/
https://github.com/Statoil/res/pull/38/
https://github.com/Statoil/res/pull/79/
https://github.com/Statoil/res/pull/10/
https://github.com/Statoil/res/pull/14/
https://github.com/Statoil/res/pull/35/
https://github.com/Statoil/res/pull/39/
https://github.com/Statoil/res/pull/45/
https://github.com/Statoil/res/pull/52/
https://github.com/Statoil/res/pull/54/
https://github.com/Statoil/res/pull/58/
https://github.com/Statoil/res/pull/62/
https://github.com/Statoil/res/pull/66/
https://github.com/Statoil/res/pull/75/
https://github.com/Statoil/res/pull/17/
https://github.com/Statoil/res/pull/37/

ERT Documentation, Release 2.3

» Funcionality to create a queue_config object copy [36].

As part of this development cycle the job_dispatch script has been included in the libres distribution.
There are many PR’s related to this script:

[28, 40, 41, 51, 53, 63, 64, 83, 84, 85, 93, 94, 95, 97-99, 101, 103, 108, 110]

* Create a common run_id for one batch of simulations, and generally treat one batch of simulations
as one unit, in a better way than previously: [42, 67]

Added PPU (Paay Per Use) code to LSF driver [71].
* Workflow job PRE_SIMULATION_COPY [73, 88].
¢ Allow to unset QUEUE_OPTION [87].

* Jobs failing due to dead nodes are restarted [100].
Documentation:
» Formatting bugs: [49, 50]
* Removed doxygen + build rst [29]

10.2.3 2.2: libecl

Version 2.2.0 September 2017 PR: 1 - 169 Open PR: 108, 145
Grid:
» Extracted implementation ecl_nnc_geometry [1, 66, 75, 78, 80, 109].
* Fix bug in cell_contains for mirrored grid [51, 53].
 Extract subgrid from grid [56].
* Expose mapaxes [63, 64].
* grid.get_lgr - numbered lookup [83]
¢ Added NUMRES values to EGRID header [125].
Build & testing:
¢ Removed warnings - added pylint [4, 5, 6, 10, 11, 12]
* Accept any Python 2.7.x version [17, 18]
* Remove ERT testing & building [3, 19]
* Changes to Python/cmake machinery [25, 30, 31, 32, 49, 52, 62].
* Added cmake config file [33, 44, 45, 47].
* Only one library [54, 55, 58,

69, 73,77, 91, 133] - Removed stale binaries [59]. - Require cmake >= 2.8.12 [67]. - Fix build on OSX
[87, 88, 95, 103]. - Fix broken behavior with internal test data [97]. - Travis - compile with -Werror [122,
123, 127, 130] - Started to support Python3 syntax [150, 161] - Add support for paralell builds on Travis
[149]

libecl now fully supports OSX. On Travis it is compiled with -Werror=all which should protect against future warnings.
C++:
* Removed use of deignated initializers [7].

* Memory leak in EclFilename.cpp [14].

10.2. Version 2.2 69

https://github.com/Statoil/res/pull/36/
https://github.com/Statoil/res/pull/28/
https://github.com/Statoil/res/pull/40/
https://github.com/Statoil/res/pull/1/
https://github.com/Statoil/res/pull/51/
https://github.com/Statoil/res/pull/53/
https://github.com/Statoil/res/pull/63/
https://github.com/Statoil/res/pull/64/
https://github.com/Statoil/res/pull/83/
https://github.com/Statoil/res/pull/84/
https://github.com/Statoil/res/pull/85/
https://github.com/Statoil/res/pull/93/
https://github.com/Statoil/res/pull/94/
https://github.com/Statoil/res/pull/95/
https://github.com/Statoil/res/pull/97/
https://github.com/Statoil/res/pull/99/
https://github.com/Statoil/res/pull/101/
https://github.com/Statoil/res/pull/103/
https://github.com/Statoil/res/pull/108/
https://github.com/Statoil/res/pull/110/
https://github.com/Statoil/res/pull/42/
https://github.com/Statoil/res/pull/67/
https://github.com/Statoil/res/pull/71/
https://github.com/Statoil/res/pull/73/
https://github.com/Statoil/res/pull/88/
https://github.com/Statoil/res/pull/87/
https://github.com/Statoil/res/pull/100/
https://github.com/Statoil/res/pull/49/
https://github.com/Statoil/res/pull/50/
https://github.com/Statoil/res/pull/29/
https://github.com/Statoil/libecl/pull/1/
https://github.com/Statoil/libecl/pull/66/
https://github.com/Statoil/libecl/pull/75/
https://github.com/Statoil/libecl/pull/78/
https://github.com/Statoil/libecl/pull/80/
https://github.com/Statoil/libecl/pull/109/
https://github.com/Statoil/libecl/pull/51/
https://github.com/Statoil/libecl/pull/53/
https://github.com/Statoil/libecl/pull/56/
https://github.com/Statoil/libecl/pull/63/
https://github.com/Statoil/libecl/pull/64/
https://github.com/Statoil/libecl/pull/83/
https://github.com/Statoil/libecl/pull/125/
https://github.com/Statoil/libecl/pull/4/
https://github.com/Statoil/libecl/pull/5/
https://github.com/Statoil/libecl/pull/6/
https://github.com/Statoil/libecl/pull/10/
https://github.com/Statoil/libecl/pull/11/
https://github.com/Statoil/libecl/pull/12/
https://github.com/Statoil/libecl/pull/17/
https://github.com/Statoil/libecl/pull/18/
https://github.com/Statoil/libecl/pull/3/
https://github.com/Statoil/libecl/pull/19/
https://github.com/Statoil/libecl/pull/25/
https://github.com/Statoil/libecl/pull/3/
https://github.com/Statoil/libecl/pull/31/
https://github.com/Statoil/libecl/pull/32/
https://github.com/Statoil/libecl/pull/49/
https://github.com/Statoil/libecl/pull/52/
https://github.com/Statoil/libecl/pull/62/
https://github.com/Statoil/libecl/pull/33/
https://github.com/Statoil/libecl/pull/44/
https://github.com/Statoil/libecl/pull/45/
https://github.com/Statoil/libecl/pull/47/
https://github.com/Statoil/libecl/pull/54/
https://github.com/Statoil/libecl/pull/55/
https://github.com/Statoil/libecl/pull/58/
https://github.com/Statoil/libecl/pull/69/
https://github.com/Statoil/libecl/pull/73/
https://github.com/Statoil/libecl/pull/77/
https://github.com/Statoil/libecl/pull/91/
https://github.com/Statoil/libecl/pull/133/
https://github.com/Statoil/libecl/pull/59/
https://github.com/Statoil/libecl/pull/67/
https://github.com/Statoil/libecl/pull/87/
https://github.com/Statoil/libecl/pull/88/
https://github.com/Statoil/libecl/pull/95/
https://github.com/Statoil/libecl/pull/103/
https://github.com/Statoil/libecl/pull/97/
https://github.com/Statoil/libecl/pull/122/
https://github.com/Statoil/libecl/pull/123/
https://github.com/Statoil/libecl/pull/127/
https://github.com/Statoil/libecl/pull/130/
https://github.com/Statoil/libecl/pull/150/
https://github.com/Statoil/libecl/pull/161/
https://github.com/Statoil/libecl/pull/149/
https://github.com/Statoil/libecl/pull/7/
https://github.com/Statoil/libecl/pull/14/

ERT Documentation, Release 2.3

Guarantee C linkage for ecl_data_type [65].
New smspec overload [89].
Use -std=c++0x if -std=c++11 is unavailable [118]

Make all of (previous(libutil compile with C++ [162]

Get well rates from restart files [8, ‘20 <https://github.com/Statoil/res/pull/20/>°_].
Test if file exists before load [111].

Fix some warnings [169]

Support for variable length strings in binary eclipse files [13, 146].

Renamed root package ert -> ecl [21]

Load INTERSECT summary files with NAMES instead WGNAMES [34 - 39].
Possible memory leak: [61]

Refactored binary time search in __get_index_from_sim_time() [113]

Possible to mark fortio writer as “failed” - will unlink on close [119].

Allow keywords of more than 8 characters [120, 124].

ecl_sum writer: Should write RESTART keyword [129, 131]

Made EclVersion class [160]

Functionality to dump an index file for binary files: [155, 159, 163, 166, 167]

Added legacy pacakge ert/ [48, 99]
Improved logging - adding enums for og levels [90, 140, 141]

Refactored to use snake_case instead of CamelCase [144, 145]

Version 2.1.0 February 2017 PR: 1150 - 1415 Open PR: 1352, 1358, 1362

Queue system/workflows:

Functionality to blacklist nodes from LSF [1240, 1256, 1258, 1274, 1412, 1415].

Use bhist command to check Isf job status if job has expired from bjobs [1301].

Debug output from torque goes to stdout [1151].

Torque driver will not abort if gstat returns invalid status [1411].

Simulation status USER_EXIT - count as failed [1166].

Added Enum identifier ‘JOB_QUEUE_DO_KILL_NODE_FAILURE [1268].

Have deprecated the ability to set queue options directly on the drivers [1288].

Added system for version specific loading for workflow job model description files [1177].
Job loader should not try to load from directory [1187].

Refactoring of max runtime - initiated from WPRO [1237].

70

Chapter 10. Release notes for ERT

https://github.com/Statoil/libecl/pull/65/
https://github.com/Statoil/libecl/pull/89/
https://github.com/Statoil/libecl/pull/118/
https://github.com/Statoil/libecl/pull/162/
https://github.com/Statoil/libecl/pull/8/
https://github.com/Statoil/res/pull/20/
https://github.com/Statoil/libecl/pull/111/
https://github.com/Statoil/libecl/pull/169/
https://github.com/Statoil/libecl/pull/13/
https://github.com/Statoil/libecl/pull/146/
https://github.com/Statoil/libecl/pull/21/
https://github.com/Statoil/libecl/pull/34/
https://github.com/Statoil/libecl/pull/39/
https://github.com/Statoil/libecl/pull/61/
https://github.com/Statoil/libecl/pull/113/
https://github.com/Statoil/libecl/pull/119/
https://github.com/Statoil/libecl/pull/120/
https://github.com/Statoil/libecl/pull/124/
https://github.com/Statoil/libecl/pull/129/
https://github.com/Statoil/libecl/pull/131/
https://github.com/Statoil/libecl/pull/160/
https://github.com/Statoil/libecl/pull/155/
https://github.com/Statoil/libecl/pull/159/
https://github.com/Statoil/libecl/pull/163/
https://github.com/Statoil/libecl/pull/166/
https://github.com/Statoil/libecl/pull/167/
https://github.com/Statoil/libecl/pull/48/
https://github.com/Statoil/libecl/pull/99/
https://github.com/Statoil/libecl/pull/90/
https://github.com/Statoil/libecl/pull/140/
https://github.com/Statoil/libecl/pull/141/
https://github.com/Statoil/libecl/pull/144/
https://github.com/Statoil/libecl/pull/145/

ERT Documentation, Release 2.3

* Determine which nodes are running a job [1251].
Build updates:

* Check if python modules are present in the required version [1150].

* Do not build ERT_GUI if PyQt4 is not found [1150, 1230].

* Do not fail build numpy is not found [1153].

* Allow for user provided CMAKE_C_FLAGS on linux [1300].

* Require exactly version 2.7 of Python [1307].

* Travis testing improvements [1363].

* Removed devel/ directory from source [1196].

* Setting correct working directory, and build target dependency for sphinx-apidoc / html generation [1385].
Eclipse library:

* C++ move constructor and operator= for smspec_node [1155, 1200].

e fortio_ftruncate() [1161].

 INIT writer will write keywords DEPTH, DX, DY, DZ [1164, 1172, 1311, 1388].

* Grid writer will take unit system enum argument [1164].

¢ New function ecl_kw_first_different() [1165].

* Completion variables can be treated as totals [1167].

¢ Fixed bug in ecl_kw_compare_numeric() [1168].

» Refactored / inlined volume calculations in ecl_grid [1173, 1184].

* Made function ecl_kw_size_and_type_equal() public [1192].

* Fixed bug in ecl_grid_cell_contains() [1402, 1404, 1195, 1419].

* OOM bug in ecl_kw_grdecl loader for large files [1207].

* Cache cell volumes in ecl_grid [1228].

* Geertsma / gravity functionality [1227, 1284, 1289, 1292, 1364, 1408].

e Summary + restart - will allow some keyword differences [1296].

* Implemented ecl_rst_file_open_write_seek() [1236].

» Optionally apply mapaxes [1242, 1281].

» Expose and use ecl_file_view datastructere - stop using ‘blocks’ in ecl_file objects [1250].

¢ ecl_sum will internalize Aquifer variables [1275].

* Make sure region properties RxxT are marked as total + depreecated some properties [1285].

 ecl_kw_resize() + C++ operator[] [1316]

* Added small C++ utility to create eclipse filenames[1396].

¢ Make sure restart and INIT files are written with correct unit ID [1399, 1407].

 Skip keyword data type: ‘C0O10’ without failing [1406, 1410].

* Adding parsing of the last (optional) config token for the SLAVES kwd [1409].

¢ Add nnc index to the information exported by ecl_nnc_export() [1204].

10.2. Version 2.2 71

ERT Documentation, Release 2.3

* Marked solvent related total keywords ?NIT and ?NPT.* as totals [1241].

Top active cell in grid [1322].
Added absolute epsilon to ecl_kw comparsion [1345,1351].

Smoother, updates and ‘running’:

Fixed bug with local updates of GEN_DATA [1291].

Changed default MDA weights and removed file input [1156, 1190, 1191].

Bug in handling of failed realisations [1163].

Fix bug missing assignment of analysis module in ES-MDA [1179].
OpenMP implementation of fwd_step [1185, 1324,1342].

Removes the ability to update dynamic variables [1189].

Allow max CV FOLD to be the number of ensembles [1205, 1208].
Fix for min_realizations logic [1206].

Can assign a specific analyis module for one local update [1224].

Handle updates when some summary relaisations are “too short” [1400, 1405].

Extending hook manager to support PRE_UPDATE and POST_UPDATE hooks [1340,1360].

RML logging is on by default [1318].
Changed default ENKF_ALPHA value to 3.0 [??]

Implemented subsspacce inversion algorithm [1334, 1344].

libgeometry:

* Added function to create new geo_surface (i.e. IRAP) object [1308].

Get (X, y) pos from surface [1395].

Python code:

e cwrap has been moved out to stand-alone module, out of ert package [1159, 1320, 1325, 1326, 1328, 1332,

1338, 1341, 1343, 1347, 1350, 1353]
Simplified loading of shared libraries [1234].
Python3 preparations [1231, 1347].

Added __repr__ methods: [1266, 1327, 1329, 1331, 1348, 1373, 1375, 1377, 1384, 1387].

Implement __getitem__() for gen_data [1331].

Removed cstring_obj Python class [1387].

EclKW.numpy_array returns shared buffer ndarray [1180].
Minor bug in ecl_kw.py [1171].

Added EcIKW.numpyView() and EcIKW.numpyCopy() [1188].
Bug in EcIKW slice access [1203].

Expose active_list better in Python [1392].

@TYPE@_vector suppports negative indices in __getitem__ and __setitem__; added repr method [1378].

added root() methdo ert/__init__.py [1293].

72

Chapter 10. Release notes for ERT

ERT Documentation, Release 2.3

GUI / Configuration / Documentation

Bug when viewing plots while simulating [1157.]

Bug when plotting short vectors [1303].

Completely refactored the ERT Gui event system [1158, 1162].

Marked keywords INIT_SECTION and SCHEDULE_FILE as deprecated [1181].
Removed outdated keywords from documentation [1390].

Documented UMASK keyword [1186].

ConfigParser: Can turn off validation + warnings [1233, 1249, 1287].

Make ies advanced option only [1401].

Removing MAX_RUNNING_LOCAL and MAX_RUNNING_LSF from user doc [1398].
Apply plot style to other plots [1397].

Fig bug in initialization when out of range [1394].

Added new object for generic config settings [1391].

Changes to plot settings [11359,376,1380,1382,1386].

Fix bug in load case manually [1368].

Documentation of plugins [1194].

Changed all time handling to UTC. This will affect loading old cases [1229, 1257].
Removed keyword QC_PATH + updated GRID [1263].

Making sure the ertshell is creating the run path [1280].

Create Doxygen [1277,1278,1294,1309,1317].

Ability to run analysis from GUI [1314].

Improved documentation of priors [1319].

Bug in config parsing with relative paths [1333].

Field documentation updates [1337].

libwecl_well:

Internalize rates for wells and connections in the well library [1403].

New function well_ts_get_name() [1393].

libutil:

Functions for parsing and outputting dates in ISO format[1248].
stringlist_join - like Python str.join [1243].

bug in matrix_dgemm [1286].

Resurrected block_fs utilities from the past [1297].

Slicing for runpath_list [1356].

10.2.

Version 2.2

73

ERT Documentation, Release 2.3

74

Chapter 10. Release notes for ERT

CHAPTER
ELEVEN

INDICES AND TABLES

* genindex
¢ modindex

¢ search

75

	Introduction to ERT and Ensemble based methods
	The data types available in ERT
	Running simulations - the Forward Model
	Workflows
	Configuring observations for ERT
	Eclipse - or not
	The smoother update in ERT
	Use the ERT API to create custom functionality
	Keywords for the configuration file
	Release notes for ERT
	Indices and tables

